메뉴 건너뛰기




Volumn , Issue , 2008, Pages 433-444

Mining significant graph patterns by leap search

Author keywords

Classification; Graph; Optimality; Pattern

Indexed keywords

DATA MINING; DECISION SUPPORT SYSTEMS; INFORMATION MANAGEMENT; MINING; PROBABILITY DENSITY FUNCTION;

EID: 57149124218     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1376616.1376662     Document Type: Conference Paper
Times cited : (281)

References (28)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proc. of SIGMOD, pages 207-216, 1993.
    • (1993) Proc. of SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 2
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences: Mining contrast sets
    • S. Bay and M. Pazzani. Detecting group differences: Mining contrast sets. Data Mining and Knowledge Discovery, 5:213-246, 2001.
    • (2001) Data Mining and Knowledge Discovery , vol.5 , pp. 213-246
    • Bay, S.1    Pazzani, M.2
  • 5
    • 34548741255 scopus 로고    scopus 로고
    • Discriminative frequent pattern analysis for effective classification
    • H. Cheng, X. Yan, J. Han, and C. Hsu. Discriminative frequent pattern analysis for effective classification. In Proc. of ICDE, pages 716-725, 2007.
    • (2007) Proc. of ICDE , pp. 716-725
    • Cheng, H.1    Yan, X.2    Han, J.3    Hsu, C.4
  • 6
    • 35448982399 scopus 로고    scopus 로고
    • Fg-index: Towards verification-free query processing on graph databases
    • J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free query processing on graph databases. In Proc. of SIGMOD, pages 857 - 868, 2007.
    • (2007) Proc. of SIGMOD , pp. 857-868
    • Cheng, J.1    Ke, Y.2    Ng, W.3    Lu, A.4
  • 8
    • 0002034653 scopus 로고    scopus 로고
    • Efficient mining of emerging patterns: Discovering trends and differences
    • G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. In Proc. of SIGKDD, pages 15-18, 1999.
    • (1999) Proc. of SIGKDD , pp. 15-18
    • Dong, G.1    Li, J.2
  • 9
    • 31844445614 scopus 로고    scopus 로고
    • Optimal assignment kernels for attributed molecular graphs
    • H. Fröhlich, J. Wegner, F. Sieker, and A. Zell. Optimal assignment kernels for attributed molecular graphs. In Proc. of ICDM, pages 225-232, 2005.
    • (2005) Proc. of ICDM , pp. 225-232
    • Fröhlich, H.1    Wegner, J.2    Sieker, F.3    Zell, A.4
  • 10
    • 49749107567 scopus 로고    scopus 로고
    • ORIGAMI: Mining representative orthogonal graph patterns
    • M. Hasan, V. Chaoji, S. Salem, J. Besson, and M. Zaki. ORIGAMI: Mining representative orthogonal graph patterns. In Proc. of ICDM, pages 153 - 162, 2007.
    • (2007) Proc. of ICDM , pp. 153-162
    • Hasan, M.1    Chaoji, V.2    Salem, S.3    Besson, J.4    Zaki, M.5
  • 11
    • 84878102536 scopus 로고    scopus 로고
    • Graphrank: Statistical modeling and mining of significant subgraphs in the feature space
    • H. He and A. Singh. Graphrank: Statistical modeling and mining of significant subgraphs in the feature space. In Proc. of ICDM, pages 885 - 890, 2006.
    • (2006) Proc. of ICDM , pp. 885-890
    • He, H.1    Singh, A.2
  • 13
    • 43549084245 scopus 로고    scopus 로고
    • Evaluating the interestingness of characteristic rules
    • M. Kamber and R. Shinghal. Evaluating the interestingness of characteristic rules. In Proc. of SIGKDD, pages 263-266, 1996.
    • (1996) Proc. of SIGKDD , pp. 263-266
    • Kamber, M.1    Shinghal, R.2
  • 15
    • 0035789622 scopus 로고    scopus 로고
    • Molecular feature mining in HIV data
    • S. Kramer, L. Raedt, and C. Helma. Molecular feature mining in HIV data. In Proc. of SIGKDD, pages 136-143, 2001.
    • (2001) Proc. of SIGKDD , pp. 136-143
    • Kramer, S.1    Raedt, L.2    Helma, C.3
  • 16
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. of ICDM, pages 313-320, 2001.
    • (2001) Proc. of ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 17
    • 0033687894 scopus 로고    scopus 로고
    • Traversing itemset lattice with statistical metric pruning
    • S. Morishita and J. Sese. Traversing itemset lattice with statistical metric pruning. In Proc. of SIGMOD, pages 226 - 236, 2000.
    • (2000) Proc. of SIGMOD , pp. 226-236
    • Morishita, S.1    Sese, J.2
  • 20
    • 0141719772 scopus 로고    scopus 로고
    • Finding the most interesting patterns in a database quickly by using sequential sampling
    • T. Scheffer and S. Wrobel. Finding the most interesting patterns in a database quickly by using sequential sampling. J. of Machine Learning Research, 3:833-862, 2002.
    • (2002) J. of Machine Learning Research , vol.3 , pp. 833-862
    • Scheffer, T.1    Wrobel, S.2
  • 22
    • 0242625291 scopus 로고    scopus 로고
    • Selecting the right interestingness measure for association patterns
    • P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association patterns. In Proc. of SIGKDD, pages 32 - 41, 2002.
    • (2002) Proc. of SIGKDD , pp. 32-41
    • Tan, P.1    Kumar, V.2    Srivastava, J.3
  • 23
    • 84860611101 scopus 로고    scopus 로고
    • Comparison of descriptor spaces for chemical compound retrieval and classification
    • N. Wale and G. Karypis. Comparison of descriptor spaces for chemical compound retrieval and classification. In Proc. of ICDM, pages 678-689, 2006.
    • (2006) Proc. of ICDM , pp. 678-689
    • Wale, N.1    Karypis, G.2
  • 24
    • 0000835392 scopus 로고
    • Opus: An efficient admissible algorithm for unordered search
    • G. I. Webb. Opus: An efficient admissible algorithm for unordered search. J. of Artificial Intelligence Research, 3:431-465, 1995.
    • (1995) J. of Artificial Intelligence Research , vol.3 , pp. 431-465
    • Webb, G.I.1
  • 25
    • 34249653461 scopus 로고    scopus 로고
    • Discovering significant patterns
    • G. I. Webb. Discovering significant patterns. Machine Learning, 68:1 - 33, 2007.
    • (2007) Machine Learning , vol.68 , pp. 1-33
    • Webb, G.I.1
  • 26
    • 78149333073 scopus 로고    scopus 로고
    • X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc. of ICDM, 2002.
    • X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc. of ICDM, 2002.
  • 27
    • 77952334885 scopus 로고    scopus 로고
    • CloseGraph: Mining closed frequent graph patterns
    • X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proc. of SIGKDD, pages 286-295, 2003.
    • (2003) Proc. of SIGKDD , pp. 286-295
    • Yan, X.1    Han, J.2
  • 28
    • 3142736597 scopus 로고    scopus 로고
    • Graph indexing: A frequent structure-based approach
    • X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In Proc. of SIGMOD, pages 335-346, 2004.
    • (2004) Proc. of SIGMOD , pp. 335-346
    • Yan, X.1    Yu, P.S.2    Han, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.