메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 185-193

Multi-source learning with block-wise missing data for Alzheimer's disease prediction

Author keywords

Alzheimer's disease; Block wise missing data; Multi source; Optimization

Indexed keywords

DATA MINING; DIAGNOSIS; NEURODEGENERATIVE DISEASES; OPTIMIZATION;

EID: 84991665233     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487594     Document Type: Conference Paper
Times cited : (83)

References (34)
  • 1
    • 33845363891 scopus 로고    scopus 로고
    • A fast linkage detection scheme for multi-source information integration
    • International Workshop on Challenges in, IEEE
    • A. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source information integration. In Web Information Retrieval and Integration, 2005. WIRI'05. Proceedings. International Workshop on Challenges in, pages 30-39. IEEE, 2005.
    • (2005) Web Information Retrieval and Integration, 2005. WIRI'05. Proceedings , pp. 30-39
    • Aizawa, A.1    Oyama, K.2
  • 3
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-Task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-Task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 6
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-Thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-Thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 8
    • 79959342076 scopus 로고    scopus 로고
    • Penalized methods for bi-level variable selection
    • P. Breheny and J. Huang. Penalized methods for bi-level variable selection. Statistics and its interface, 2(3):369, 2009.
    • (2009) Statistics and its Interface , vol.2 , Issue.3 , pp. 369
    • Breheny, P.1    Huang, J.2
  • 15
    • 70450245260 scopus 로고    scopus 로고
    • Recovering sparse signals with a certain family of nonconvex penalties and DC programming
    • G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with a certain family of nonconvex penalties and DC programming. Signal Processing, IEEE Transactions on, 57(12):4686-4698, 2009.
    • (2009) Signal Processing, IEEE Transactions on , vol.57 , Issue.12 , pp. 4686-4698
    • Gasso, G.1    Rakotomamonjy, A.2    Canu, S.3
  • 24
    • 0000939953 scopus 로고    scopus 로고
    • Convex analysis approach to dc programming: Theory, algorithms and applications
    • P. Tao and L. An. Convex analysis approach to dc programming: Theory, algorithms and applications. Acta Math. Vietnam, 22(1):289-355, 1997.
    • (1997) Acta Math. Vietnam , vol.22 , Issue.1 , pp. 289-355
    • Tao, P.1    An, L.2
  • 26
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data sources for gene function prediction (in saccharomyces cerevisiae)
    • O. Troyanskaya, K. Dolinski, A. Owen, R. Altman, and D. Botstein. A bayesian framework for combining heterogeneous data sources for gene function prediction (in saccharomyces cerevisiae). Proceedings of the National Academy of Sciences, 100(14):8348, 2003.
    • (2003) Proceedings of the National Academy of Sciences , vol.100 , Issue.14 , pp. 8348
    • Troyanskaya, O.1    Dolinski, K.2    Owen, A.3    Altman, R.4    Botstein, D.5
  • 27
    • 23844431650 scopus 로고    scopus 로고
    • Simultaneous variable selection
    • B. Turlach, W. Venables, and S. Wright. Simultaneous variable selection. Technometrics, 47(3):349-363, 2005.
    • (2005) Technometrics , vol.47 , Issue.3 , pp. 349-363
    • Turlach, B.1    Venables, W.2    Wright, S.3
  • 32
    • 84861187815 scopus 로고    scopus 로고
    • Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
    • L. Yuan, Y. Wang, P. Thompson, V. Narayan, and J. Ye. Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage, 61(3):622-632, 2012.
    • (2012) NeuroImage , vol.61 , Issue.3 , pp. 622-632
    • Yuan, L.1    Wang, Y.2    Thompson, P.3    Narayan, V.4    Ye, J.5
  • 34
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-Task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • D. Zhang and D. Shen. Multi-modal multi-Task learning for joint prediction of multiple regression and classification variables in alzheimer's disease. NeuroImage, 59(2):895-907, 2012.
    • (2012) NeuroImage , vol.59 , Issue.2 , pp. 895-907
    • Zhang, D.1    Shen, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.