메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 1385-1394

Structural graphical lasso for learning mouse brain connectivity

Author keywords

Brain networks; Graphical lasso; Proximal operator; Screening; Second order method; Tree structural regularization

Indexed keywords

ALGORITHMS; BRAIN; BRAIN MAPPING; CLUSTERING ALGORITHMS; FORESTRY; GRAPHIC METHODS; INVERSE PROBLEMS; MAMMALS; NEUROIMAGING; SCREENING;

EID: 84954170577     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783391     Document Type: Conference Paper
Times cited : (27)

References (36)
  • 3
    • 84871604261 scopus 로고    scopus 로고
    • Structured sparsity through convex optimization
    • Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Structured sparsity through convex optimization. Statistical Science, 27(4):450-468, 2012.
    • (2012) Statistical Science , vol.27 , Issue.4 , pp. 450-468
    • Bach, F.1    Jenatton, R.2    Mairal, J.3    Obozinski, G.4
  • 4
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research, 9:485-516, 2008.
    • (2008) The Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 5
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1-122, 2011.
    • (2011) Foundations and Trends® in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 8
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 81355137473 scopus 로고    scopus 로고
    • Functional and effective connectivity: A review
    • Karl J Friston. Functional and effective connectivity: a review. Brain connectivity, 1(1):13-36, 2011.
    • (2011) Brain Connectivity , vol.1 , Issue.1 , pp. 13-36
    • Friston, K.J.1
  • 10
    • 79952164560 scopus 로고    scopus 로고
    • Joint estimation of multiple graphical models
    • J. Guo, E. Levina, G. Michailidis, and J. Zhu. Joint estimation of multiple graphical models. Biometrika, 98(1):1-15, 2011.
    • (2011) Biometrika , vol.98 , Issue.1 , pp. 1-15
    • Guo, J.1    Levina, E.2    Michailidis, G.3    Zhu, J.4
  • 15
    • 84860633052 scopus 로고    scopus 로고
    • An inexact interior point method for l 1-regularized sparse covariance selection
    • L. Li and K.C. Toh. An inexact interior point method for l 1-regularized sparse covariance selection. Mathematical Programming Computation, 2(3):291-315, 2010.
    • (2010) Mathematical Programming Computation , vol.2 , Issue.3 , pp. 291-315
    • Li, L.1    Toh, K.C.2
  • 17
    • 84887395568 scopus 로고    scopus 로고
    • SLEP: Sparse learning with efficient projections
    • J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient Projections. Arizona State University, 2009.
    • (2009) Arizona State University
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 19
    • 70450200096 scopus 로고    scopus 로고
    • Smooth optimization approach for sparse covariance selection
    • Z. Lu. Smooth optimization approach for sparse covariance selection. SIAM Journal on Optimization, 19(4):1807-1827, 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1807-1827
    • Lu, Z.1
  • 21
    • 84859447804 scopus 로고    scopus 로고
    • Exact covariance thresholding into connected components for large-scale graphical lasso
    • R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for large-scale graphical lasso. The Journal of Machine Learning Research, 13:781-794, 2012.
    • (2012) The Journal of Machine Learning Research , vol.13 , pp. 781-794
    • Mazumder, R.1    Hastie, T.2
  • 22
    • 84875395423 scopus 로고    scopus 로고
    • The graphical lasso: New insights and alternatives
    • R. Mazumder and T. Hastie. The graphical lasso: New insights and alternatives. Electronic Journal of Statistics, 6:2125-2149, 2012.
    • (2012) Electronic Journal of Statistics , vol.6 , pp. 2125-2149
    • Mazumder, R.1    Hastie, T.2
  • 23
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3):1436-1462, 2006.
    • (2006) The Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 28
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117(1):387-423, 2009.
    • (2009) Mathematical Programming , vol.117 , Issue.1 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 29
    • 79251515796 scopus 로고    scopus 로고
    • Solving log-determinant optimization problems by a Newton-cg primal proximal point algorithm
    • C. Wang, D. Sun, and K.C. Toh. Solving log-determinant optimization problems by a newton-cg primal proximal point algorithm. SIAM Journal on Optimization, 20(6):2994-3013, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.6 , pp. 2994-3013
    • Wang, C.1    Sun, D.2    Toh, K.C.3
  • 33
    • 84866045483 scopus 로고    scopus 로고
    • Feature grouping and selection over an undirected graph
    • ACM
    • S. Yang, L. Yuan, Y.C. Lai, X. Shen, P. Wonka, and J. Ye. Feature grouping and selection over an undirected graph. In KDD, pages 922-930. ACM, 2012.
    • (2012) KDD , pp. 922-930
    • Yang, S.1    Yuan, L.2    Lai, Y.C.3    Shen, X.4    Wonka, P.5    Ye, J.6
  • 34
    • 84880544524 scopus 로고    scopus 로고
    • Sparse methods for biomedical data
    • J. Ye and J. Liu. Sparse methods for biomedical data. ACM SIGKDD Explorations Newsletter, 14(1):4-15, 2012.
    • (2012) ACM SIGKDD Explorations Newsletter , vol.14 , Issue.1 , pp. 4-15
    • Ye, J.1    Liu, J.2
  • 35
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical model. Biometrika, 94(1):19-35, 2007.
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 36
    • 84864128199 scopus 로고    scopus 로고
    • Alternating direction method for covariance selection models
    • X. Yuan. Alternating direction method for covariance selection models. Journal of Scientific Computing, 51(2):261-273, 2012.
    • (2012) Journal of Scientific Computing , vol.51 , Issue.2 , pp. 261-273
    • Yuan, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.