메뉴 건너뛰기




Volumn 35, Issue 1-2, 2008, Pages 531-541

Multiclass SVM-RFE for product form feature selection

Author keywords

Feature selection; Mobile phone design; Multiclass support vector machines recursive feature elimination (SVM RFE)

Indexed keywords

ARCHITECTURAL DESIGN; DESIGN; FUZZY LOGIC; GEARS; IMAGE RETRIEVAL; KETONES; LEARNING SYSTEMS; MATHEMATICAL MODELS; MULTILAYER NEURAL NETWORKS; PRODUCT DESIGN; STRUCTURAL DESIGN; TELECOMMUNICATION EQUIPMENT; VECTORS;

EID: 44949258241     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.07.043     Document Type: Article
Times cited : (89)

References (29)
  • 1
    • 0032155316 scopus 로고    scopus 로고
    • Unsupervised feature selection using a neuro-fuzzy approach
    • Basak J., De R.K., and Pal S.K. Unsupervised feature selection using a neuro-fuzzy approach. Pattern Recognition Letters 19 (1998) 997-1006
    • (1998) Pattern Recognition Letters , vol.19 , pp. 997-1006
    • Basak, J.1    De, R.K.2    Pal, S.K.3
  • 2
    • 44949123159 scopus 로고    scopus 로고
    • Bradley, P. S. & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In Proceedings of 15th international conference on machine learning (pp. 82-90). California, San Francisco.
    • Bradley, P. S. & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In Proceedings of 15th international conference on machine learning (pp. 82-90). California, San Francisco.
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 955-974
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 955-974
    • Burges, C.1
  • 4
    • 33745817438 scopus 로고    scopus 로고
    • Combining SVMs with various feature selection strategies
    • Guyon I., Gunn S., Nikravesh M., and Zadeh L. (Eds), Springer, New York
    • Chen Y.W., and Lin C.J. Combining SVMs with various feature selection strategies. In: Guyon I., Gunn S., Nikravesh M., and Zadeh L. (Eds). Feature extraction, foundations and applications (2006), Springer, New York
    • (2006) Feature extraction, foundations and applications
    • Chen, Y.W.1    Lin, C.J.2
  • 5
    • 26644466101 scopus 로고    scopus 로고
    • Multiple SVM-RFE for gene selection in cancer classification with expression data
    • Duan K.B., Rajapakse J.C., Wang H., and Azuaje F. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Transactions of Nanobioscience 4 3 (2005) 228-234
    • (2005) IEEE Transactions of Nanobioscience , vol.4 , Issue.3 , pp. 228-234
    • Duan, K.B.1    Rajapakse, J.C.2    Wang, H.3    Azuaje, F.4
  • 7
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., and Bapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 46 1-3 (2002) 389-422
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Bapnik, V.4
  • 8
    • 0037626566 scopus 로고    scopus 로고
    • A comparison of screening methods: selecting important design variables for modeling product usability
    • Han S.H., and Kim J. A comparison of screening methods: selecting important design variables for modeling product usability. International Journal of Industrial Ergonomics 32 (2003) 189-198
    • (2003) International Journal of Industrial Ergonomics , vol.32 , pp. 189-198
    • Han, S.H.1    Kim, J.2
  • 9
    • 0346503027 scopus 로고    scopus 로고
    • Identifying mobile phone design features critical to user satisfaction
    • Han S.H., Kim K.J., and Yun M.H. Identifying mobile phone design features critical to user satisfaction. Human Factors and Ergonomics in Manufacturing 14 1 (2004) 15-29
    • (2004) Human Factors and Ergonomics in Manufacturing , vol.14 , Issue.1 , pp. 15-29
    • Han, S.H.1    Kim, K.J.2    Yun, M.H.3
  • 10
    • 0346218197 scopus 로고    scopus 로고
    • Screening important design variables for building a usability model
    • Han S.H., and Yang H. Screening important design variables for building a usability model. International Journal of Industrial Ergonomics 33 (2004) 159-171
    • (2004) International Journal of Industrial Ergonomics , vol.33 , pp. 159-171
    • Han, S.H.1    Yang, H.2
  • 11
    • 44949097824 scopus 로고    scopus 로고
    • Hsu, C. W., Chang, C. C. & Lin, C. J. (2003). Technical report, A practical guide to support vector classification, Department of Computer Science and Information Engineering, National Taiwan University: Taiwan.
    • Hsu, C. W., Chang, C. C. & Lin, C. J. (2003). Technical report, A practical guide to support vector classification, Department of Computer Science and Information Engineering, National Taiwan University: Taiwan.
  • 12
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C.W., and Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13 (2001) 415-425
    • (2001) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 13
    • 44949163455 scopus 로고    scopus 로고
    • Jensen, R. (2005). Combining rough and fuzzy sets for feature selection. School of Informatics, University of Edinburgh. Doctor of Philosophy.
    • Jensen, R. (2005). Combining rough and fuzzy sets for feature selection. School of Informatics, University of Edinburgh. Doctor of Philosophy.
  • 15
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • Juang B.H., and Katagiri S. Discriminative learning for minimum error classification. IEEE Transactions of Signal Process 40 12 (1992) 3043-3054
    • (1992) IEEE Transactions of Signal Process , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, B.H.1    Katagiri, S.2
  • 16
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • Kohavi R., and John G. Wrapper for feature subset selection. Artificial Intelligence 97 1-2 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 17
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • Scholkopf B., Burges J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
    • Krebel U. Pairwise classification and support vector machines. In: Scholkopf B., Burges J.C., and Smola A.J. (Eds). Advances in kernel methods-support vector learning (1999), MIT Press, Cambridge, MA 255-268
    • (1999) Advances in kernel methods-support vector learning , pp. 255-268
    • Krebel, U.1
  • 18
    • 0036024017 scopus 로고    scopus 로고
    • A methodology for evaluating the usability of audiovisual consumer electronic products
    • Kwahk J., and Han S.H. A methodology for evaluating the usability of audiovisual consumer electronic products. Applied Ergonomics 33 (2002) 419-431
    • (2002) Applied Ergonomics , vol.33 , pp. 419-431
    • Kwahk, J.1    Han, S.H.2
  • 21
    • 33646099818 scopus 로고    scopus 로고
    • FS_SFS: A novel feature selection method for support vector machines
    • Liu Y., and Zheng Y.F. FS_SFS: A novel feature selection method for support vector machines. Pattern Recognition 39 (2006) 1333-1345
    • (2006) Pattern Recognition , vol.39 , pp. 1333-1345
    • Liu, Y.1    Zheng, Y.F.2
  • 22
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • Mao K.Z. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Transactions of System, Man and Cybernetics 34 1 (2004) 60-67
    • (2004) IEEE Transactions of System, Man and Cybernetics , vol.34 , Issue.1 , pp. 60-67
    • Mao, K.Z.1
  • 23
    • 27744481181 scopus 로고    scopus 로고
    • Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection
    • Mao Y., Zhou X., Pi D., Sun Y., and Wong S.T.C. Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection. Journal of Biomedicine and Biotechnology 2 (2005) 160-171
    • (2005) Journal of Biomedicine and Biotechnology , vol.2 , pp. 160-171
    • Mao, Y.1    Zhou, X.2    Pi, D.3    Sun, Y.4    Wong, S.T.C.5
  • 24
    • 0029748748 scopus 로고    scopus 로고
    • Pal, S. K., Basak, J. & De, R. K. (1996). Feature selection: A neuro-fuzzy approach. In Proceedings of the IEEE international conference on neural networks (pp. 1197-1202). Washington, DC.
    • Pal, S. K., Basak, J. & De, R. K. (1996). Feature selection: A neuro-fuzzy approach. In Proceedings of the IEEE international conference on neural networks (pp. 1197-1202). Washington, DC.
  • 25
    • 2342641982 scopus 로고    scopus 로고
    • A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design
    • Park J., and Han S.H. A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design. International Journal of Industrial Ergonomics 34 (2004) 31-47
    • (2004) International Journal of Industrial Ergonomics , vol.34 , pp. 31-47
    • Park, J.1    Han, S.H.2
  • 28
    • 15544370161 scopus 로고    scopus 로고
    • Wakaki, T., Itakura, H. & Tamura, M. (2004). Rough set-aided feature selection for automatic web-page classification. In Proceedings of the IEEE/WIC/ACM international conference on web intelligence (pp. 70- 76).
    • Wakaki, T., Itakura, H. & Tamura, M. (2004). Rough set-aided feature selection for automatic web-page classification. In Proceedings of the IEEE/WIC/ACM international conference on web intelligence (pp. 70- 76).
  • 29
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • Wang W., Xu Z., and Lu W. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55 (2003) 643-663
    • (2003) Neurocomputing , vol.55 , pp. 643-663
    • Wang, W.1    Xu, Z.2    Lu, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.