메뉴 건너뛰기




Volumn 59, Issue , 2016, Pages 199-212

Human action recognition using genetic algorithms and convolutional neural networks

Author keywords

Action bank features; Convolutional neural network (CNN); Genetic algorithms (GA); Human action recognition

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); CONVOLUTION; GESTURE RECOGNITION; MOTION ESTIMATION; NEURAL NETWORKS;

EID: 84956860695     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.01.012     Document Type: Article
Times cited : (170)

References (79)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • [1] Bengio, Y., Simard, P., Frasconi, P., Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5:2 (1994), 157–166.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 2
    • 6344235947 scopus 로고    scopus 로고
    • The MNIST database of handwritten digits
    • URL 〈 〉.
    • [2] Y. Lecun, C. Cortes, The MNIST database of handwritten digits. URL 〈 http://yann.lecun.com/exdb/mnist/ 〉.
    • Lecun, Y.1    Cortes, C.2
  • 5
    • 79955649703 scopus 로고    scopus 로고
    • Human activity analysis: a review
    • [5] Aggarwal, J., Ryoo, M., Human activity analysis: a review. ACM Comput. Surv. 43:3 (2011), 1–43, 10.1145/1922649.1922653.
    • (2011) ACM Comput. Surv. , vol.43 , Issue.3 , pp. 1-43
    • Aggarwal, J.1    Ryoo, M.2
  • 6
    • 78751648503 scopus 로고    scopus 로고
    • A survey of vision-based methods for action representation, segmentation and recognition
    • [6] Weinland, D., Ronfard, R., Boyer, E., A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Underst. 115:2 (2011), 224–241, 10.1016/j.cviu.2010.10.002.
    • (2011) Comput. Vis. Image Underst. , vol.115 , Issue.2 , pp. 224-241
    • Weinland, D.1    Ronfard, R.2    Boyer, E.3
  • 12
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • in: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
    • [12] S. Sadanand, J. J. Corso, Action bank: A high-level representation of activity in video, in: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 1234–1241.
    • (2012) , pp. 1234-1241
    • Sadanand, S.1    Corso, J.J.2
  • 14
    • 84887476984 scopus 로고    scopus 로고
    • Learning latent spatio-temporal compositional model for human action recognition
    • [14] X. Liang, L. Lin, L. Cao, Learning latent spatio-temporal compositional model for human action recognition, In: ACM International Conference on Multimedia (ACM MM), 2013, pp. 263–272.
    • (2013) ACM International Conference on Multimedia (ACM MM) , pp. 263-272
    • Liang, X.1    Lin, L.2    Cao, L.3
  • 15
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: a review and new perspectives
    • [15] Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1798–1828, 10.1109/TPAMI.2013.50.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 17
    • 84906343066 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation, CoRR abs/1311
    • 2524.
    • [17] R.B. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CoRR abs/1311.2524.
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 0030737097 scopus 로고    scopus 로고
    • Face recognition: a convolutional neural-network approach
    • [18] Lawrence, S., Giles, C., Tsoi, A.C., Back, A., Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8:1 (1997), 98–113, 10.1109/72.554195.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.1 , pp. 98-113
    • Lawrence, S.1    Giles, C.2    Tsoi, A.C.3    Back, A.4
  • 19
    • 0037707305 scopus 로고    scopus 로고
    • Subject independent facial expression recognition with robust face detection using a convolutional neural network
    • [19] Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y., Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 16:5–6 (2003), 555–559.
    • (2003) Neural Netw. , vol.16 , Issue.5-6 , pp. 555-559
    • Matsugu, M.1    Mori, K.2    Mitari, Y.3    Kaneda, Y.4
  • 20
    • 33750135479 scopus 로고    scopus 로고
    • A convolutional neural network approach for objective video quality assessment
    • [20] Le Callet, P., Viard-Gaudin, C., Barba, D., A convolutional neural network approach for objective video quality assessment. IEEE Trans. Neural Netw. 17:5 (2006), 1316–1327, 10.1109/TNN.2006.879766.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.5 , pp. 1316-1327
    • Le Callet, P.1    Viard-Gaudin, C.2    Barba, D.3
  • 21
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • [21] Ji, S., Xu, W., Yang, M., Yu, K., 3d convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35:1 (2013), 221–231.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 22
    • 84911364368 scopus 로고    scopus 로고
    • Large-scale video classification with convolutional neural networks
    • In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
    • [22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-scale video classification with convolutional neural networks, In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1725–1732. http://dx.doi.org/10.1109/CVPR.2014.223.
    • (2014) , pp. 1725-1732
    • Karpathy, A.1    Toderici, G.2    Shetty, S.3    Leung, T.4    Sukthankar, R.5    Fei-Fei, L.6
  • 25
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • [25] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 84913584483 scopus 로고    scopus 로고
    • 3d human activity recognition with reconfigurable convolutional neural networks
    • [27] K. Wang, X. Wang, L. Lin, M. Wang, W. Zuo, 3d human activity recognition with reconfigurable convolutional neural networks, in: Proceedings of the ACM International Conference on Multimedia, MM ׳14, ACM, New York, NY, USA, 2014, pp. 97–106. http://dx.doi.org/10.1145/2647868.2654912.
    • Wang, K.1    Wang, X.2    Lin, L.3    Wang, M.4    Zuo, W.5
  • 28
    • 84952023029 scopus 로고    scopus 로고
    • A deep structured model with radius-margin bound for 3d human activity recognition, Int
    • in: Proceedings of the ACM International Conference on Multimedia, MM ׳14, ACM, New York, NY, USA J. Comput. Vis., 2015, pp.
    • [28] L. Lin, K. Wang, W. Zuo, M. Wang, J. Luo, L. Zhang, A deep structured model with radius-margin bound for 3d human activity recognition, Int. J. Comput. Vis., 2015, pp. 1–18. http://dx.doi.org/10.1007/s11263-015-0876-z.
    • (2014) , pp. 1-18
    • Lin, L.1    Wang, K.2    Zuo, W.3    Wang, M.4    Luo, J.5    Zhang, L.6
  • 29
    • 85006134164 scopus 로고    scopus 로고
    • P-CNN: pose-based CNN features for action recognition
    • CoRR abs/1506.03607 URL.
    • [29] G. Chéron, I. Laptev, C. Schmid, P-CNN: pose-based CNN features for action recognition, CoRR abs/1506.03607 URL arxiv.org/abs/1506.03607.
    • Chéron, G.1    Laptev, I.2    Schmid, C.3
  • 30
    • 85045114917 scopus 로고    scopus 로고
    • Differential recurrent neural networks for action recognition, CoRR abs/1504
    • 06678. URL.
    • [30] V. Veeriah, N. Zhuang, G. Qi, Differential recurrent neural networks for action recognition, CoRR abs/1504.06678. URL arxiv.org/abs/1504.06678.
    • Veeriah, V.1    Zhuang, N.2    Qi, G.3
  • 31
    • 84924949081 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • CoRR abs/1406.2199. URL.
    • [31] K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recognition in videos, CoRR abs/1406.2199. URL arxiv.org/abs/1406.2199.
    • Simonyan, K.1    Zisserman, A.2
  • 33
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • [33] Bengio, Y., Learning deep architectures for ai. Found. Trends Mach. Learn. 2:1 (2009), 1–127, 10.1561/2200000006.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 35
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • [35] Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 37
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS׳10)
    • Society for Artificial Intelligence and Statistics.
    • [37] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS׳10). Society for Artificial Intelligence and Statistics, 2010.
    • (2010)
    • Glorot, X.1    Bengio, Y.2
  • 38
    • 84872548900 scopus 로고    scopus 로고
    • Early stopping – but when?
    • In: Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 1524, Springer-Verlag,
    • [38] L. Prechelt, Early stopping – but when? In: Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 1524, Springer-Verlag, 1997, pp. 55–69, Chapter 2.
    • (1997) , pp. 55-69
    • Prechelt, L.1
  • 42
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • 28, JMLR.org
    • [42] I. Sutskever, J. Martens, G.E. Dahl, G.E. Hinton, On the importance of initialization and momentum in deep learning, In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), JMLR Proceedings, vol. 28, JMLR.org, 2013, pp. 1139–1147.
    • (2013) , pp. 1139-1147
    • Sutskever, I.1    Martens, J.2    Dahl, G.E.3    Hinton, G.E.4
  • 43
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • [43] Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 44
    • 0000436567 scopus 로고
    • Using genetic algorithms to improve pattern classification performance
    • R. Lippmann J.E. Moody D.S. Touretzky Morgan Kaufmann Denver, Colorado, USA
    • [44] Chang, E.I., Lippmann, R., Using genetic algorithms to improve pattern classification performance. Lippmann, R., Moody, J.E., Touretzky, D.S., (eds.) Proceedings of Advances in Neural Information Processing Systems (NIPS), November 26–29, 1990, Morgan Kaufmann, Denver, Colorado, USA, 797–803.
    • (1990) Proceedings of Advances in Neural Information Processing Systems (NIPS), November 26–29 , pp. 797-803
    • Chang, E.I.1    Lippmann, R.2
  • 46
    • 0002811225 scopus 로고
    • Towards the genetic synthesis of neural network, in: Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc
    • , San Francisco, CA, USA,
    • [46] S.A. Harp, T. Samad, A. Guha, Towards the genetic synthesis of neural network, in: Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989, pp. 360–369.
    • (1989) , pp. 360-369
    • Harp, S.A.1    Samad, T.2    Guha, A.3
  • 47
    • 0001439044 scopus 로고
    • Using genetic search to exploit the emergent behavior of neural networks
    • [47] Schaffer, J., Caruana, R.A., Eshelman, L.J., Using genetic search to exploit the emergent behavior of neural networks. Phys. D: Nonlinear Phenom. 42:1–3 (1990), 244–248 http://dx.doi.org/10.1016/0167-2789(90)90078-4.
    • (1990) Phys. D: Nonlinear Phenom. , vol.42 , Issue.1-3 , pp. 244-248
    • Schaffer, J.1    Caruana, R.A.2    Eshelman, L.J.3
  • 48
    • 0000743347 scopus 로고
    • Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI׳89)
    • 1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • [48] D.J. Montana, L. Davis, Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI׳89), vol. 1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989, pp. 762–767.
    • (1989) , pp. 762-767
    • Montana, D.J.1    Davis, L.2
  • 49
    • 84876157910 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks: a review
    • [49] Ding, S., Li, H., Su, C., Yu, J., Jin, F., Evolutionary artificial neural networks: a review. Artif. Intell. Rev. 39:3 (2013), 251–260, 10.1007/s10462-011-9270-6.
    • (2013) Artif. Intell. Rev. , vol.39 , Issue.3 , pp. 251-260
    • Ding, S.1    Li, H.2    Su, C.3    Yu, J.4    Jin, F.5
  • 50
    • 0026624310 scopus 로고
    • Genetic generation of both the weights and architecture for a neural network, in: International Joint Conference on Neural Networks (IJCNN-91), vol
    • [50] J.R. Koza, J.P. Rice, Genetic generation of both the weights and architecture for a neural network, in: International Joint Conference on Neural Networks (IJCNN-91), vol. ii, 1991, pp. 397–404 vol.2. http://dx.doi.org/10.1109/IJCNN.1991.155366.
    • (1991) , vol.2 , pp. 397-404
    • Koza, J.R.1    Rice, J.P.2
  • 53
    • 0026711747 scopus 로고
    • General asymmetric neural networks and structure design by genetic algorithms
    • [53] Bornholdt, S., Graudenz, D., General asymmetric neural networks and structure design by genetic algorithms. Neural Netw. 5:2 (1992), 327–334 http://dx.doi.org/10.1016/S0893-6080(05)80030-9.
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 327-334
    • Bornholdt, S.1    Graudenz, D.2
  • 55
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • [55] Yao, X., Evolving artificial neural networks. Proc. IEEE 87:9 (1999), 1423–1447, 10.1109/5.784219.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 56
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • [56] Yao, X., A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 4 (1993), 539–567.
    • (1993) Int. J. Intell. Syst. , vol.4 , pp. 539-567
    • Yao, X.1
  • 58
    • 4344639386 scopus 로고    scopus 로고
    • Genetic algorithm optimization of a convolutional neural network for autonomous crack detection, in: Congress on Evolutionary Computation (CEC2004), vol
    • [58] R. Oullette, M. Browne, K. Hirasawa, Genetic algorithm optimization of a convolutional neural network for autonomous crack detection, in: Congress on Evolutionary Computation (CEC2004), vol. 1, 2004, pp. 516–521.
    • (2004) , vol.1 , pp. 516-521
    • Oullette, R.1    Browne, M.2    Hirasawa, K.3
  • 59
    • 84893223102 scopus 로고    scopus 로고
    • Evolutionary optimization-based training of convolutional neural networks for ocr applications
    • in: 17th International Conference on System Theory, Control and Computing (ICSTCC),
    • [59] L.-O. Fedorovici, R.-E. Precup, F. Dragan, C. Purcaru, Evolutionary optimization-based training of convolutional neural networks for ocr applications, in: 17th International Conference on System Theory, Control and Computing (ICSTCC), 2013, pp. 207–212.
    • (2013) , pp. 207-212
    • Fedorovici, L.-O.1    Precup, R.-E.2    Dragan, F.3    Purcaru, C.4
  • 60
    • 64549119687 scopus 로고    scopus 로고
    • Gsa: a gravitational search algorithm
    • [60] Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., Gsa: a gravitational search algorithm. Inf. Sci. 179:13 (2009), 2232–2248.
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2232-2248
    • Rashedi, E.1    Nezamabadi-pour, H.2    Saryazdi, S.3
  • 61
    • 0029535737 scopus 로고
    • Particle swarm optimization, in: IEEE International Conference on Neural Networks, vol
    • Perth, Australia, IEEE Service Center, Piscataway, NJ
    • [61] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: IEEE International Conference on Neural Networks, vol. 4, Perth, Australia, IEEE Service Center, Piscataway, NJ, 1995, pp. 1942–1948.
    • (1995) , vol.4 , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.C.2
  • 62
    • 84958542967 scopus 로고    scopus 로고
    • Lecture Notes in Computer Science
    • A. del Pobil E. Chinellato E. Martinez-Martin J. Hallam E. Cervera A. Morales Springer International Publishing
    • [62] Koutník, J., Schmidhuber, J., Gomez, F., Lecture Notes in Computer Science. del Pobil, A., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A., (eds.) From Animals to Animats 13, Lecture Notes in Computer Science, vol. 8575, 2014, Springer International Publishing, 260–269.
    • (2014) From Animals to Animats 13, Lecture Notes in Computer Science , vol.8575 , pp. 260-269
    • Koutník, J.1    Schmidhuber, J.2    Gomez, F.3
  • 63
    • 44649193889 scopus 로고    scopus 로고
    • Accelerated neural evolution through cooperatively coevolved synapses
    • [63] Gomez, F., Schmidhuber, J., Miikkulainen, R., Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9 (2009), 937–965.
    • (2009) J. Mach. Learn. Res. , vol.9 , pp. 937-965
    • Gomez, F.1    Schmidhuber, J.2    Miikkulainen, R.3
  • 64
    • 0003463297 scopus 로고
    • Adaptation in Natural and Artificial Systems
    • University of Michigan Press, Ann Arbor, MI, USA, 1975. URL 〈〉.
    • [64] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, USA, 1975. URL 〈 http://books.google.com/books?id=YE5RAAAAMAAJ〉.
    • (1975)
    • Holland, J.1
  • 65
    • 85018068585 scopus 로고
    • Darwin׳s theory of the origin of species
    • [65] Bascom, J., Darwin׳s theory of the origin of species. Am. Theol. Rev. 3 (1871), 349–379.
    • (1871) Am. Theol. Rev. , vol.3 , pp. 349-379
    • Bascom, J.1
  • 66
    • 0004181390 scopus 로고    scopus 로고
    • Genetic algorithms
    • Pearson Education India
    • [66] Goldberg, D.E., Genetic algorithms. 2006, Pearson Education, India.
    • (2006)
    • Goldberg, D.E.1
  • 67
    • 85055384819 scopus 로고    scopus 로고
    • Ensemble Methods: Foundations and Algorithms
    • 1st Ed. Chapman & Hall/CRC
    • [67] Zhou, Z.-H., Ensemble Methods: Foundations and Algorithms. 1st Ed., 2012, Chapman & Hall/CRC.
    • (2012)
    • Zhou, Z.-H.1
  • 68
    • 84893584920 scopus 로고    scopus 로고
    • Prediction as a candidate for learning deep hierarchical models of data (Master׳s thesis)
    • Technical University of Denmark, Asmussens Alle, Denmark,.
    • [68] R.B. Palm, Prediction as a candidate for learning deep hierarchical models of data (Master׳s thesis). Technical University of Denmark, Asmussens Alle, Denmark, 2012.
    • (2012)
    • Palm, R.B.1
  • 69
    • 84879553900 scopus 로고    scopus 로고
    • Recognizing 50 human action categories of web videos
    • [69] Reddy, K.K., Shah, M., Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 24:5 (2012), 971–981, 10.1007/s00138-012-0450-4.
    • (2012) Mach. Vis. Appl. , vol.24 , Issue.5 , pp. 971-981
    • Reddy, K.K.1    Shah, M.2
  • 70
    • 85045118611 scopus 로고    scopus 로고
    • Action bank: a high-level representation of activity in video, URL 〈〉, accessed on: 2015-08-08.
    • [70] Action bank: a high-level representation of activity in video, URL 〈 http://www.cse.buffalo.edu/~jcorso/r/actionbank/〉, accessed on: 2015-08-08.
  • 71
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • [71] Huang, G.-B., Zhu, Q.-Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70:1–3 (2006), 489–501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.K.3
  • 74
    • 84887400741 scopus 로고    scopus 로고
    • Motionlets: Mid-level 3d parts for human motion recognition
    • in: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
    • [74] L. Wang, Y. Qiao, X. Tang, Motionlets: Mid-level 3d parts for human motion recognition, in: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2674–2681.
    • (2013) , pp. 2674-2681
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 76
    • 84946685619 scopus 로고    scopus 로고
    • Human action recognition based on recognition of linear patterns in action bank features using convolutional neural networks
    • [76] E.P. Ijjina, C. Mohan, Human action recognition based on recognition of linear patterns in action bank features using convolutional neural networks, In: Proceedings of the 13th International Conference on Machine Learning and Applications (ICMLA), 2014, pp. 178–182. http://dx.doi.org/10.1109/ICMLA.2014.33.
    • (2014) Proceedings of the 13th International Conference on Machine Learning and Applications (ICMLA) , pp. 178-182
    • Ijjina, E.P.1    Mohan, C.2
  • 77
    • 84898819608 scopus 로고    scopus 로고
    • Space-time robust representation for action recognition
    • In: The IEEE International Conference on Computer Vision (ICCV),.
    • [77] N. Ballas, Y. Yang, Z.-Z. Lan, B. Delezoide, F. Preteux, A. Hauptmann, Space-time robust representation for action recognition, In: The IEEE International Conference on Computer Vision (ICCV), 2013.
    • (2013)
    • Ballas, N.1    Yang, Y.2    Lan, Z.-Z.3    Delezoide, B.4    Preteux, F.5    Hauptmann, A.6
  • 79
    • 85047483184 scopus 로고    scopus 로고
    • EXMOVES: classifier-based features for scalable action recognition
    • CoRR abs/1312.5785.
    • [79] D. Tran, L. Torresani, EXMOVES: classifier-based features for scalable action recognition, CoRR abs/1312.5785.
    • Tran, D.1    Torresani, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.