-
1
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
[1] Bengio, Y., Simard, P., Frasconi, P., Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5:2 (1994), 157–166.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
2
-
-
6344235947
-
The MNIST database of handwritten digits
-
URL 〈 〉.
-
[2] Y. Lecun, C. Cortes, The MNIST database of handwritten digits. URL 〈 http://yann.lecun.com/exdb/mnist/ 〉.
-
-
-
Lecun, Y.1
Cortes, C.2
-
3
-
-
84933515070
-
Imagenet large scale visual recognition challenge, CoRR abs/1409
-
[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M.S. Bernstein, A.C. Berg, L. Fei-Fei, Imagenet large scale visual recognition challenge, CoRR abs/1409.0575.
-
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.S.10
Berg, A.C.11
Fei-Fei, L.12
-
4
-
-
84892582758
-
Combining modality specific deep neural networks for emotion recognition in video
-
in: Proceedings of the 15th ACM International Conference on Multimodal Interaction, ICMI ׳13, ACM, New York, NY, USA,
-
[4] S.E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, c. Gülçehre, R. Memisevic, P. Vincent, A. Courville, Y. Bengio, R.C. Ferrari, M. Mirza, S. Jean, P.-L. Carrier, Y. Dauphin, N. Boulanger-Lewandowski, A. Aggarwal, J. Zumer, P. Lamblin, J.-P. Raymond, G. Desjardins, R. Pascanu, D. Warde-Farley, A. Torabi, A. Sharma, E. Bengio, M. Côté, K. R. Konda, Z. Wu, Combining modality specific deep neural networks for emotion recognition in video, in: Proceedings of the 15th ACM International Conference on Multimodal Interaction, ICMI ׳13, ACM, New York, NY, USA, 2013, pp. 543–550. http://dx.doi.org/10.1145/2522848.2531745.
-
(2013)
, pp. 543-550
-
-
Kahou, S.E.1
Pal, C.2
Bouthillier, X.3
Froumenty, P.4
Gülçehre, C.5
Memisevic, R.6
Vincent, P.7
Courville, A.8
Bengio, Y.9
Ferrari, R.C.10
Mirza, M.11
Jean, S.12
Carrier, P.-L.13
Dauphin, Y.14
Boulanger-Lewandowski, N.15
Aggarwal, A.16
Zumer, J.17
Lamblin, P.18
Raymond, J.-P.19
Desjardins, G.20
Pascanu, R.21
Warde-Farley, D.22
Torabi, A.23
Sharma, A.24
Bengio, E.25
Côté, M.26
Konda, K.R.27
Wu, Z.28
more..
-
5
-
-
79955649703
-
Human activity analysis: a review
-
[5] Aggarwal, J., Ryoo, M., Human activity analysis: a review. ACM Comput. Surv. 43:3 (2011), 1–43, 10.1145/1922649.1922653.
-
(2011)
ACM Comput. Surv.
, vol.43
, Issue.3
, pp. 1-43
-
-
Aggarwal, J.1
Ryoo, M.2
-
6
-
-
78751648503
-
A survey of vision-based methods for action representation, segmentation and recognition
-
[6] Weinland, D., Ronfard, R., Boyer, E., A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Underst. 115:2 (2011), 224–241, 10.1016/j.cviu.2010.10.002.
-
(2011)
Comput. Vis. Image Underst.
, vol.115
, Issue.2
, pp. 224-241
-
-
Weinland, D.1
Ronfard, R.2
Boyer, E.3
-
7
-
-
84855406160
-
Human action recognition using multiple views: a comparative perspective on recent developments
-
[7] M.B. Holte, C. Tran, M.M. Trivedi, T.B. Moeslund, Human action recognition using multiple views: a comparative perspective on recent developments, in: Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding, J-HGBU ׳11, ACM, New York, NY, USA, 2011, pp. 47–52. http://dx.doi.org/10.1145/2072572.2072588.
-
(2011)
Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding, J-HGBU ׳11, ACM, New York, NY, USA
, pp. 47-52
-
-
Holte, M.B.1
Tran, C.2
Trivedi, M.M.3
Moeslund, T.B.4
-
8
-
-
84875494948
-
A survey of video datasets for human action and activity recognition
-
[8] Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A., A survey of video datasets for human action and activity recognition. Comput. Vis. Image Underst. 117:6 (2013), 633–659.
-
(2013)
Comput. Vis. Image Underst.
, vol.117
, Issue.6
, pp. 633-659
-
-
Chaquet, J.M.1
Carmona, E.J.2
Fernández-Caballero, A.3
-
9
-
-
84893624135
-
Recognizing human actions by a bag of visual words
-
[9] P. Foggia, G. Percannella, A. Saggese, M. Vento, Recognizing human actions by a bag of visual words, in: Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2013, pp. 2910–2915. http://dx.doi.org/10.1109/SMC.2013.496.
-
(2013)
Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
, pp. 2910-2915
-
-
Foggia, P.1
Percannella, G.2
Saggese, A.3
Vento, M.4
-
10
-
-
51949083365
-
Learning realistic human actions from movies
-
[10] I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, Learning realistic human actions from movies, In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1–8.
-
(2008)
Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1-8
-
-
Laptev, I.1
Marszalek, M.2
Schmid, C.3
Rozenfeld, B.4
-
11
-
-
33745821718
-
Human detection using oriented histograms of flow and appearance
-
[11] N. Dalal, B. Triggs, C. Schmid, Human detection using oriented histograms of flow and appearance, In: Proceedings of the 9th European Conference on Computer Vision - Volume Part II, ECCV 06, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 428–441.
-
(2006)
Proceedings of the 9th European Conference on Computer Vision - Volume Part II, ECCV 06, Springer-Verlag, Berlin, Heidelberg
, pp. 428-441
-
-
Dalal, N.1
Triggs, B.2
Schmid, C.3
-
12
-
-
84866718894
-
Action bank: A high-level representation of activity in video
-
in: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
-
[12] S. Sadanand, J. J. Corso, Action bank: A high-level representation of activity in video, in: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 1234–1241.
-
(2012)
, pp. 1234-1241
-
-
Sadanand, S.1
Corso, J.J.2
-
13
-
-
80052877143
-
Action recognition by dense trajectories
-
[13] H. Wang, A. Klaser, C. Schmid, C.-L. Liu, Action recognition by dense trajectories, in: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 3169–3176.
-
(2011)
Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3169-3176
-
-
Wang, H.1
Klaser, A.2
Schmid, C.3
Liu, C.-L.4
-
14
-
-
84887476984
-
Learning latent spatio-temporal compositional model for human action recognition
-
[14] X. Liang, L. Lin, L. Cao, Learning latent spatio-temporal compositional model for human action recognition, In: ACM International Conference on Multimedia (ACM MM), 2013, pp. 263–272.
-
(2013)
ACM International Conference on Multimedia (ACM MM)
, pp. 263-272
-
-
Liang, X.1
Lin, L.2
Cao, L.3
-
15
-
-
84879854889
-
Representation learning: a review and new perspectives
-
[15] Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1798–1828, 10.1109/TPAMI.2013.50.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
16
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
[16] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, In: Advances in Neural Information Processing Systems (NIPS 2012), 2012, pp. 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems (NIPS 2012)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
84906343066
-
Rich feature hierarchies for accurate object detection and semantic segmentation, CoRR abs/1311
-
2524.
-
[17] R.B. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CoRR abs/1311.2524.
-
-
-
Girshick, R.B.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
18
-
-
0030737097
-
Face recognition: a convolutional neural-network approach
-
[18] Lawrence, S., Giles, C., Tsoi, A.C., Back, A., Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8:1 (1997), 98–113, 10.1109/72.554195.
-
(1997)
IEEE Trans. Neural Netw.
, vol.8
, Issue.1
, pp. 98-113
-
-
Lawrence, S.1
Giles, C.2
Tsoi, A.C.3
Back, A.4
-
19
-
-
0037707305
-
Subject independent facial expression recognition with robust face detection using a convolutional neural network
-
[19] Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y., Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 16:5–6 (2003), 555–559.
-
(2003)
Neural Netw.
, vol.16
, Issue.5-6
, pp. 555-559
-
-
Matsugu, M.1
Mori, K.2
Mitari, Y.3
Kaneda, Y.4
-
20
-
-
33750135479
-
A convolutional neural network approach for objective video quality assessment
-
[20] Le Callet, P., Viard-Gaudin, C., Barba, D., A convolutional neural network approach for objective video quality assessment. IEEE Trans. Neural Netw. 17:5 (2006), 1316–1327, 10.1109/TNN.2006.879766.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.5
, pp. 1316-1327
-
-
Le Callet, P.1
Viard-Gaudin, C.2
Barba, D.3
-
21
-
-
84870183903
-
3d convolutional neural networks for human action recognition
-
[21] Ji, S., Xu, W., Yang, M., Yu, K., 3d convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35:1 (2013), 221–231.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
22
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
-
[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-scale video classification with convolutional neural networks, In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1725–1732. http://dx.doi.org/10.1109/CVPR.2014.223.
-
(2014)
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
23
-
-
84969504307
-
C3D: generic features for video analysis
-
CoRR abs/1412.0767.
-
[23] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, M. Paluri, C3D: generic features for video analysis, CoRR abs/1412.0767.
-
-
-
Tran, D.1
Bourdev, L.D.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
25
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
[25] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
26
-
-
81855221241
-
Sequential deep learning for human action recognition
-
[26] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, A. Baskurt, Sequential deep learning for human action recognition, In: Proceedings of the Second International Conference on Human Behavior Unterstanding, HBU׳11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 29–39.
-
(2011)
Proceedings of the Second International Conference on Human Behavior Unterstanding, HBU׳11, Springer-Verlag, Berlin, Heidelberg
, pp. 29-39
-
-
Baccouche, M.1
Mamalet, F.2
Wolf, C.3
Garcia, C.4
Baskurt, A.5
-
27
-
-
84913584483
-
-
3d human activity recognition with reconfigurable convolutional neural networks
-
[27] K. Wang, X. Wang, L. Lin, M. Wang, W. Zuo, 3d human activity recognition with reconfigurable convolutional neural networks, in: Proceedings of the ACM International Conference on Multimedia, MM ׳14, ACM, New York, NY, USA, 2014, pp. 97–106. http://dx.doi.org/10.1145/2647868.2654912.
-
-
-
Wang, K.1
Wang, X.2
Lin, L.3
Wang, M.4
Zuo, W.5
-
28
-
-
84952023029
-
A deep structured model with radius-margin bound for 3d human activity recognition, Int
-
in: Proceedings of the ACM International Conference on Multimedia, MM ׳14, ACM, New York, NY, USA J. Comput. Vis., 2015, pp.
-
[28] L. Lin, K. Wang, W. Zuo, M. Wang, J. Luo, L. Zhang, A deep structured model with radius-margin bound for 3d human activity recognition, Int. J. Comput. Vis., 2015, pp. 1–18. http://dx.doi.org/10.1007/s11263-015-0876-z.
-
(2014)
, pp. 1-18
-
-
Lin, L.1
Wang, K.2
Zuo, W.3
Wang, M.4
Luo, J.5
Zhang, L.6
-
29
-
-
85006134164
-
P-CNN: pose-based CNN features for action recognition
-
CoRR abs/1506.03607 URL.
-
[29] G. Chéron, I. Laptev, C. Schmid, P-CNN: pose-based CNN features for action recognition, CoRR abs/1506.03607 URL arxiv.org/abs/1506.03607.
-
-
-
Chéron, G.1
Laptev, I.2
Schmid, C.3
-
30
-
-
85045114917
-
Differential recurrent neural networks for action recognition, CoRR abs/1504
-
06678. URL.
-
[30] V. Veeriah, N. Zhuang, G. Qi, Differential recurrent neural networks for action recognition, CoRR abs/1504.06678. URL arxiv.org/abs/1504.06678.
-
-
-
Veeriah, V.1
Zhuang, N.2
Qi, G.3
-
31
-
-
84924949081
-
Two-stream convolutional networks for action recognition in videos
-
CoRR abs/1406.2199. URL.
-
[31] K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recognition in videos, CoRR abs/1406.2199. URL arxiv.org/abs/1406.2199.
-
-
-
Simonyan, K.1
Zisserman, A.2
-
32
-
-
80054108245
-
On the expressive power of deep architectures
-
[32] Y. Bengio, O. Delalleau, On the expressive power of deep architectures, in: Proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT׳11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 18–36.
-
(2011)
Proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT׳11, Springer-Verlag, Berlin, Heidelberg
, pp. 18-36
-
-
Bengio, Y.1
Delalleau, O.2
-
33
-
-
69349090197
-
Learning deep architectures for ai
-
[33] Bengio, Y., Learning deep architectures for ai. Found. Trends Mach. Learn. 2:1 (2009), 1–127, 10.1561/2200000006.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
34
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
In: In NIPS, MIT Press,.
-
[34] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U.D. Montral, M. Québec, Greedy layer-wise training of deep networks, In: In NIPS, MIT Press, 2007.
-
(2007)
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
Montral, U.D.5
Québec, M.6
-
35
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
[35] Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
36
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
[36] Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P., Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10 (2009), 1–40.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
37
-
-
79951563340
-
Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS׳10)
-
Society for Artificial Intelligence and Statistics.
-
[37] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS׳10). Society for Artificial Intelligence and Statistics, 2010.
-
(2010)
-
-
Glorot, X.1
Bengio, Y.2
-
38
-
-
84872548900
-
Early stopping – but when?
-
In: Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 1524, Springer-Verlag,
-
[38] L. Prechelt, Early stopping – but when? In: Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 1524, Springer-Verlag, 1997, pp. 55–69, Chapter 2.
-
(1997)
, pp. 55-69
-
-
Prechelt, L.1
-
39
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
[39] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
40
-
-
84890527827
-
Improving deep neural networks for lvcsr using rectified linear units and dropout
-
[40] G.E. Dahl, T.N. Sainath, G.E. Hinton, Improving deep neural networks for lvcsr using rectified linear units and dropout, in: Proceedings of the 2013 International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2013, pp. 8609–8613.
-
(2013)
Proceedings of the 2013 International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE
, pp. 8609-8613
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
-
41
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
[41] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S., Why does unsupervised pre-training help deep learning?. J. Mach. Learn. Res. 11 (2010), 625–660.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
42
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
28, JMLR.org
-
[42] I. Sutskever, J. Martens, G.E. Dahl, G.E. Hinton, On the importance of initialization and momentum in deep learning, In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), JMLR Proceedings, vol. 28, JMLR.org, 2013, pp. 1139–1147.
-
(2013)
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.E.3
Hinton, G.E.4
-
43
-
-
84857855190
-
Random search for hyper-parameter optimization
-
[43] Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
44
-
-
0000436567
-
Using genetic algorithms to improve pattern classification performance
-
R. Lippmann J.E. Moody D.S. Touretzky Morgan Kaufmann Denver, Colorado, USA
-
[44] Chang, E.I., Lippmann, R., Using genetic algorithms to improve pattern classification performance. Lippmann, R., Moody, J.E., Touretzky, D.S., (eds.) Proceedings of Advances in Neural Information Processing Systems (NIPS), November 26–29, 1990, Morgan Kaufmann, Denver, Colorado, USA, 797–803.
-
(1990)
Proceedings of Advances in Neural Information Processing Systems (NIPS), November 26–29
, pp. 797-803
-
-
Chang, E.I.1
Lippmann, R.2
-
45
-
-
85083033991
-
A genetic algorithm and neural network hybrid classification scheme
-
[45] D. Decker, J. Hintz, A genetic algorithm and neural network hybrid classification scheme, in: Proceedings of 9th AIAA Computers in Aerospace Conference, AIAA, 1993, pp. 473–475.
-
(1993)
Proceedings of 9th AIAA Computers in Aerospace Conference, AIAA
, pp. 473-475
-
-
Decker, D.1
Hintz, J.2
-
46
-
-
0002811225
-
Towards the genetic synthesis of neural network, in: Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc
-
, San Francisco, CA, USA,
-
[46] S.A. Harp, T. Samad, A. Guha, Towards the genetic synthesis of neural network, in: Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989, pp. 360–369.
-
(1989)
, pp. 360-369
-
-
Harp, S.A.1
Samad, T.2
Guha, A.3
-
47
-
-
0001439044
-
Using genetic search to exploit the emergent behavior of neural networks
-
[47] Schaffer, J., Caruana, R.A., Eshelman, L.J., Using genetic search to exploit the emergent behavior of neural networks. Phys. D: Nonlinear Phenom. 42:1–3 (1990), 244–248 http://dx.doi.org/10.1016/0167-2789(90)90078-4.
-
(1990)
Phys. D: Nonlinear Phenom.
, vol.42
, Issue.1-3
, pp. 244-248
-
-
Schaffer, J.1
Caruana, R.A.2
Eshelman, L.J.3
-
48
-
-
0000743347
-
Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI׳89)
-
1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
-
[48] D.J. Montana, L. Davis, Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI׳89), vol. 1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989, pp. 762–767.
-
(1989)
, pp. 762-767
-
-
Montana, D.J.1
Davis, L.2
-
49
-
-
84876157910
-
Evolutionary artificial neural networks: a review
-
[49] Ding, S., Li, H., Su, C., Yu, J., Jin, F., Evolutionary artificial neural networks: a review. Artif. Intell. Rev. 39:3 (2013), 251–260, 10.1007/s10462-011-9270-6.
-
(2013)
Artif. Intell. Rev.
, vol.39
, Issue.3
, pp. 251-260
-
-
Ding, S.1
Li, H.2
Su, C.3
Yu, J.4
Jin, F.5
-
50
-
-
0026624310
-
Genetic generation of both the weights and architecture for a neural network, in: International Joint Conference on Neural Networks (IJCNN-91), vol
-
[50] J.R. Koza, J.P. Rice, Genetic generation of both the weights and architecture for a neural network, in: International Joint Conference on Neural Networks (IJCNN-91), vol. ii, 1991, pp. 397–404 vol.2. http://dx.doi.org/10.1109/IJCNN.1991.155366.
-
(1991)
, vol.2
, pp. 397-404
-
-
Koza, J.R.1
Rice, J.P.2
-
52
-
-
85030642419
-
An artificial neural network representation for artificial organisms
-
[52] R.J. Collins, D.R. Jefferson, An artificial neural network representation for artificial organisms, in: Parallel Problem Solving from Nature, Springer-Verlag, 1990, pp. 259–263.
-
(1990)
Parallel Problem Solving from Nature, Springer-Verlag
, pp. 259-263
-
-
Collins, R.J.1
Jefferson, D.R.2
-
53
-
-
0026711747
-
General asymmetric neural networks and structure design by genetic algorithms
-
[53] Bornholdt, S., Graudenz, D., General asymmetric neural networks and structure design by genetic algorithms. Neural Netw. 5:2 (1992), 327–334 http://dx.doi.org/10.1016/S0893-6080(05)80030-9.
-
(1992)
Neural Netw.
, vol.5
, Issue.2
, pp. 327-334
-
-
Bornholdt, S.1
Graudenz, D.2
-
54
-
-
85033056841
-
Combinations of genetic algorithms and neural networks: a survey of the state of the art
-
[54] J. Schaffer, D. Whitley, L. Eshelman, Combinations of genetic algorithms and neural networks: a survey of the state of the art, in: International Workshop on Combinations of Genetic Algorithms and Neural Networks (COGANN-92), 1992, pp. 1–37. http://dx.doi.org/10.1109/COGANN.1992.273950.
-
(1992)
International Workshop on Combinations of Genetic Algorithms and Neural Networks (COGANN-92)
, pp. 1-37
-
-
Schaffer, J.1
Whitley, D.2
Eshelman, L.3
-
55
-
-
0033362601
-
Evolving artificial neural networks
-
[55] Yao, X., Evolving artificial neural networks. Proc. IEEE 87:9 (1999), 1423–1447, 10.1109/5.784219.
-
(1999)
Proc. IEEE
, vol.87
, Issue.9
, pp. 1423-1447
-
-
Yao, X.1
-
56
-
-
0027574256
-
A review of evolutionary artificial neural networks
-
[56] Yao, X., A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 4 (1993), 539–567.
-
(1993)
Int. J. Intell. Syst.
, vol.4
, pp. 539-567
-
-
Yao, X.1
-
57
-
-
84905653264
-
Genetic algorithms for evolving deep neural networks
-
[57] O.E. David, I. Greental, Genetic algorithms for evolving deep neural networks, in: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, GECCO Comp ׳14, ACM, New York, NY, USA, 2014, pp. 1451–1452. http://dx.doi.org/10.1145/2598394.2602287.
-
(2014)
Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, GECCO Comp ׳14, ACM, New York, NY, USA
, pp. 1451-1452
-
-
David, O.E.1
Greental, I.2
-
58
-
-
4344639386
-
Genetic algorithm optimization of a convolutional neural network for autonomous crack detection, in: Congress on Evolutionary Computation (CEC2004), vol
-
[58] R. Oullette, M. Browne, K. Hirasawa, Genetic algorithm optimization of a convolutional neural network for autonomous crack detection, in: Congress on Evolutionary Computation (CEC2004), vol. 1, 2004, pp. 516–521.
-
(2004)
, vol.1
, pp. 516-521
-
-
Oullette, R.1
Browne, M.2
Hirasawa, K.3
-
59
-
-
84893223102
-
Evolutionary optimization-based training of convolutional neural networks for ocr applications
-
in: 17th International Conference on System Theory, Control and Computing (ICSTCC),
-
[59] L.-O. Fedorovici, R.-E. Precup, F. Dragan, C. Purcaru, Evolutionary optimization-based training of convolutional neural networks for ocr applications, in: 17th International Conference on System Theory, Control and Computing (ICSTCC), 2013, pp. 207–212.
-
(2013)
, pp. 207-212
-
-
Fedorovici, L.-O.1
Precup, R.-E.2
Dragan, F.3
Purcaru, C.4
-
60
-
-
64549119687
-
Gsa: a gravitational search algorithm
-
[60] Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., Gsa: a gravitational search algorithm. Inf. Sci. 179:13 (2009), 2232–2248.
-
(2009)
Inf. Sci.
, vol.179
, Issue.13
, pp. 2232-2248
-
-
Rashedi, E.1
Nezamabadi-pour, H.2
Saryazdi, S.3
-
61
-
-
0029535737
-
Particle swarm optimization, in: IEEE International Conference on Neural Networks, vol
-
Perth, Australia, IEEE Service Center, Piscataway, NJ
-
[61] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: IEEE International Conference on Neural Networks, vol. 4, Perth, Australia, IEEE Service Center, Piscataway, NJ, 1995, pp. 1942–1948.
-
(1995)
, vol.4
, pp. 1942-1948
-
-
Kennedy, J.1
Eberhart, R.C.2
-
62
-
-
84958542967
-
Lecture Notes in Computer Science
-
A. del Pobil E. Chinellato E. Martinez-Martin J. Hallam E. Cervera A. Morales Springer International Publishing
-
[62] Koutník, J., Schmidhuber, J., Gomez, F., Lecture Notes in Computer Science. del Pobil, A., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A., (eds.) From Animals to Animats 13, Lecture Notes in Computer Science, vol. 8575, 2014, Springer International Publishing, 260–269.
-
(2014)
From Animals to Animats 13, Lecture Notes in Computer Science
, vol.8575
, pp. 260-269
-
-
Koutník, J.1
Schmidhuber, J.2
Gomez, F.3
-
63
-
-
44649193889
-
Accelerated neural evolution through cooperatively coevolved synapses
-
[63] Gomez, F., Schmidhuber, J., Miikkulainen, R., Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9 (2009), 937–965.
-
(2009)
J. Mach. Learn. Res.
, vol.9
, pp. 937-965
-
-
Gomez, F.1
Schmidhuber, J.2
Miikkulainen, R.3
-
64
-
-
0003463297
-
Adaptation in Natural and Artificial Systems
-
University of Michigan Press, Ann Arbor, MI, USA, 1975. URL 〈〉.
-
[64] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, USA, 1975. URL 〈 http://books.google.com/books?id=YE5RAAAAMAAJ〉.
-
(1975)
-
-
Holland, J.1
-
65
-
-
85018068585
-
Darwin׳s theory of the origin of species
-
[65] Bascom, J., Darwin׳s theory of the origin of species. Am. Theol. Rev. 3 (1871), 349–379.
-
(1871)
Am. Theol. Rev.
, vol.3
, pp. 349-379
-
-
Bascom, J.1
-
66
-
-
0004181390
-
Genetic algorithms
-
Pearson Education India
-
[66] Goldberg, D.E., Genetic algorithms. 2006, Pearson Education, India.
-
(2006)
-
-
Goldberg, D.E.1
-
67
-
-
85055384819
-
Ensemble Methods: Foundations and Algorithms
-
1st Ed. Chapman & Hall/CRC
-
[67] Zhou, Z.-H., Ensemble Methods: Foundations and Algorithms. 1st Ed., 2012, Chapman & Hall/CRC.
-
(2012)
-
-
Zhou, Z.-H.1
-
68
-
-
84893584920
-
Prediction as a candidate for learning deep hierarchical models of data (Master׳s thesis)
-
Technical University of Denmark, Asmussens Alle, Denmark,.
-
[68] R.B. Palm, Prediction as a candidate for learning deep hierarchical models of data (Master׳s thesis). Technical University of Denmark, Asmussens Alle, Denmark, 2012.
-
(2012)
-
-
Palm, R.B.1
-
69
-
-
84879553900
-
Recognizing 50 human action categories of web videos
-
[69] Reddy, K.K., Shah, M., Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 24:5 (2012), 971–981, 10.1007/s00138-012-0450-4.
-
(2012)
Mach. Vis. Appl.
, vol.24
, Issue.5
, pp. 971-981
-
-
Reddy, K.K.1
Shah, M.2
-
70
-
-
85045118611
-
-
Action bank: a high-level representation of activity in video, URL 〈〉, accessed on: 2015-08-08.
-
[70] Action bank: a high-level representation of activity in video, URL 〈 http://www.cse.buffalo.edu/~jcorso/r/actionbank/〉, accessed on: 2015-08-08.
-
-
-
-
71
-
-
33745903481
-
Extreme learning machine: theory and applications
-
[71] Huang, G.-B., Zhu, Q.-Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70:1–3 (2006), 489–501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.K.3
-
72
-
-
84867849228
-
Motion interchange patterns for action recognition in unconstrained videos
-
[72] O. Kliper-Gross, Y. Gurovich, T. Hassner, L. Wolf, Motion interchange patterns for action recognition in unconstrained videos, In: Proceedings of the 12th European Conference on Computer Vision(ECCV) – volume Part VI, ECCV׳12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 256–269.
-
(2012)
Proceedings of the 12th European Conference on Computer Vision(ECCV) – volume Part VI, ECCV׳12, Springer-Verlag, Berlin, Heidelberg
, pp. 256-269
-
-
Kliper-Gross, O.1
Gurovich, Y.2
Hassner, T.3
Wolf, L.4
-
73
-
-
84887327356
-
Sampling strategies for real-time action recognition
-
[73] F. Shi, E. Petriu, R. Laganiere, Sampling strategies for real-time action recognition, In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2595–2602.
-
(2013)
Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2595-2602
-
-
Shi, F.1
Petriu, E.2
Laganiere, R.3
-
74
-
-
84887400741
-
Motionlets: Mid-level 3d parts for human motion recognition
-
in: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
-
[74] L. Wang, Y. Qiao, X. Tang, Motionlets: Mid-level 3d parts for human motion recognition, in: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2674–2681.
-
(2013)
, pp. 2674-2681
-
-
Wang, L.1
Qiao, Y.2
Tang, X.3
-
75
-
-
84898817898
-
Learning to share latent tasks for action recognition
-
[75] Q. Zhou, G. Wang, K. Jia, Q. Zhao, Learning to share latent tasks for action recognition, in: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV), 2013, pp. 2264 –2271.
-
(2013)
Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV)
, pp. 2264-2271
-
-
Zhou, Q.1
Wang, G.2
Jia, K.3
Zhao, Q.4
-
76
-
-
84946685619
-
Human action recognition based on recognition of linear patterns in action bank features using convolutional neural networks
-
[76] E.P. Ijjina, C. Mohan, Human action recognition based on recognition of linear patterns in action bank features using convolutional neural networks, In: Proceedings of the 13th International Conference on Machine Learning and Applications (ICMLA), 2014, pp. 178–182. http://dx.doi.org/10.1109/ICMLA.2014.33.
-
(2014)
Proceedings of the 13th International Conference on Machine Learning and Applications (ICMLA)
, pp. 178-182
-
-
Ijjina, E.P.1
Mohan, C.2
-
77
-
-
84898819608
-
Space-time robust representation for action recognition
-
In: The IEEE International Conference on Computer Vision (ICCV),.
-
[77] N. Ballas, Y. Yang, Z.-Z. Lan, B. Delezoide, F. Preteux, A. Hauptmann, Space-time robust representation for action recognition, In: The IEEE International Conference on Computer Vision (ICCV), 2013.
-
(2013)
-
-
Ballas, N.1
Yang, Y.2
Lan, Z.-Z.3
Delezoide, B.4
Preteux, F.5
Hauptmann, A.6
-
78
-
-
84997751187
-
cudnn: Efficient primitives for deep learning
-
CoRR abs/1410.0759. URL.
-
[78] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cudnn: Efficient primitives for deep learning, CoRR abs/1410.0759. URL arxiv.org/abs/1410.0759.
-
-
-
Chetlur, S.1
Woolley, C.2
Vandermersch, P.3
Cohen, J.4
Tran, J.5
Catanzaro, B.6
Shelhamer, E.7
-
79
-
-
85047483184
-
EXMOVES: classifier-based features for scalable action recognition
-
CoRR abs/1312.5785.
-
[79] D. Tran, L. Torresani, EXMOVES: classifier-based features for scalable action recognition, CoRR abs/1312.5785.
-
-
-
Tran, D.1
Torresani, L.2
|