메뉴 건너뛰기




Volumn , Issue , 2013, Pages 811-818

Efficient object detection and segmentation for fine-grained recognition

Author keywords

fine grained categorization; image segmentation; Laplacian propagation

Indexed keywords

BENCHMARK DATASETS; CLASSIFICATION ALGORITHM; DIFFERENT CLASS; EFFICIENT OBJECT DETECTIONS; FINE-GRAINED CATEGORIZATION; LAPLACIANS; SEGMENTATION ALGORITHMS; STATE-OF-THE-ART METHODS;

EID: 84887340679     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.110     Document Type: Conference Paper
Times cited : (219)

References (28)
  • 1
    • 80052912891 scopus 로고    scopus 로고
    • Classcut for unsupervised class segmentation
    • B. Alexe, T. Deselaers, and V. Ferrari. Classcut for unsupervised class segmentation. ECCV, 2010.
    • (2010) ECCV
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 3
    • 84856668103 scopus 로고    scopus 로고
    • Bicos: A bi-level co-segmentation method for image classification
    • Y. Chai, V. Lempitsky, and A. Zisserman. Bicos: A bi-level co-segmentation method for image classification. ICCV, 2011.
    • (2011) ICCV
    • Chai, Y.1    Lempitsky, V.2    Zisserman, A.3
  • 4
    • 80052660275 scopus 로고    scopus 로고
    • An efficient approach to semantic segmentation
    • G. Csurka and F. Perronnin. An efficient approach to semantic segmentation. IJCV, 2011.
    • (2011) IJCV
    • Csurka, G.1    Perronnin, F.2
  • 5
    • 84866636076 scopus 로고    scopus 로고
    • Learning to localize detected objects
    • Q. Dai and D. Hoiem. Learning to localize detected objects. CVPR, 2012.
    • (2012) CVPR
    • Dai, Q.1    Hoiem, D.2
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 8
    • 84856640018 scopus 로고    scopus 로고
    • Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
    • R. Farrell, O. Oza, N. Zhang, V. Morariu, T. Darrell, and L. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. ICCV, 2011.
    • (2011) ICCV
    • Farrell, R.1    Oza, O.2    Zhang, N.3    Morariu, V.4    Darrell, T.5    Davis, L.6
  • 9
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. IJCV, 2004.
    • (2004) IJCV
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 11
    • 51949101047 scopus 로고    scopus 로고
    • Closing the loop on scene interpretation
    • D. Hoiem, A. Efros, and M. Hebert. Closing the loop on scene interpretation. CVPR, 2008.
    • (2008) CVPR
    • Hoiem, D.1    Efros, A.2    Hebert, M.3
  • 12
    • 84856654029 scopus 로고    scopus 로고
    • Object classfication using heterogeneous co-occurrence features
    • S. Ito and S. Kubota. Object classfication using heterogeneous co-occurrence features. ECCV, 2010.
    • (2010) ECCV
    • Ito, S.1    Kubota, S.2
  • 13
    • 77955990943 scopus 로고    scopus 로고
    • Discriminative clustering for image co-segmentation
    • A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. CVPR, 2010.
    • (2010) CVPR
    • Joulin, A.1    Bach, F.2    Ponce, J.3
  • 14
    • 77952504625 scopus 로고    scopus 로고
    • Top-down color attention for object recognition
    • F. Khan, J. van de Weijer, and M. Vanrell. Top-down color attention for object recognition. ICCV, 2009.
    • (2009) ICCV
    • Khan, F.1    Weijer De J.Van2    Vanrell, M.3
  • 16
    • 80052870284 scopus 로고    scopus 로고
    • Large-scale image classification: Fast feature extraction and svm training
    • Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image classification: fast feature extraction and svm training. CVPR, 2011.
    • (2011) CVPR
    • Lin, Y.1    Lv, F.2    Zhu, S.3    Yang, M.4    Cour, T.5    Yu, K.6    Cao, L.7    Huang, T.8
  • 17
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. ICVGIP, 2008.
    • (2008) ICVGIP
    • Nilsback, M.-E.1    Zisserman, A.2
  • 21
    • 12844262766 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graphics, 2004.
    • (2004) ACM Trans. Graphics
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 22
    • 84885881090 scopus 로고    scopus 로고
    • Objectcentric spatial pooling for image classification
    • O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Objectcentric spatial pooling for image classification. ECCV, 2012.
    • (2012) ECCV
    • Russakovsky, O.1    Lin, Y.2    Yu, K.3    Fei-Fei, L.4
  • 25
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 27
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine grained image categorization
    • B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization and discrimination for fine grained image categorization. CVPR, 2011.
    • (2011) CVPR
    • Yao, B.1    Khosla, A.2    Fei-Fei, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.