메뉴 건너뛰기




Volumn , Issue , 2013, Pages 321-328

Symbiotic segmentation and part localization for fine-grained categorization

Author keywords

Computer Vision; Detection; Fine Grained; Object Recognition; Segmentation

Indexed keywords

COMPUTER VISION; DETECTORS; ERROR DETECTION; OBJECT RECOGNITION;

EID: 84898771336     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.47     Document Type: Conference Paper
Times cited : (263)

References (35)
  • 1
    • 84887340679 scopus 로고    scopus 로고
    • Efficient object detection and segmentation for fine-grained recognition
    • A. Angelova and S. Zhu. Efficient object detection and segmentation for fine-grained recognition. In CVPR, 2013.
    • (2013) CVPR
    • Angelova, A.1    Zhu, S.2
  • 2
    • 84887356895 scopus 로고    scopus 로고
    • POOF: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation
    • T. Berg and P. N. Belhumeur. POOF: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013.
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 3
    • 85162073058 scopus 로고    scopus 로고
    • Simultaneous object detection and ranking with weak supervision
    • M. B. Blaschko, A. Vedaldi, and A. Zisserman. Simultaneous object detection and ranking with weak supervision. In NIPS, 2010.
    • (2011) NIPS
    • Blaschko, M.B.1    Vedaldi, A.2    Zisserman, A.3
  • 4
    • 0042004575 scopus 로고    scopus 로고
    • Class-specific, top-down segmentation
    • E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In ECCV, 2002.
    • (2002) ECCV
    • Borenstein, E.1    Ullman, S.2
  • 5
    • 84856647890 scopus 로고    scopus 로고
    • Describing people: A poseletbased approach to attribute classification
    • L. D. Bourdev, S. Maji, and J. Malik. Describing people: A poseletbased approach to attribute classification. In ICCV, 2011.
    • (2011) ICCV
    • Bourdev, L.D.1    Maji, S.2    Malik, J.3
  • 6
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. D. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.D.1    Malik, J.2
  • 7
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of mincut/max-flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov. An experimental comparison of mincut/max-flow algorithms for energy minimization in vision. PAMI, 2004.
    • (2004) PAMI
    • Boykov, Y.1    Kolmogorov, V.2
  • 9
    • 80052887473 scopus 로고    scopus 로고
    • Object segmentation by alignment of poselet activations to image contours
    • T. Brox, L. D. Bourdev, S. Maji, and J. Malik. Object segmentation by alignment of poselet activations to image contours. In CVPR, 2011.
    • (2011) CVPR
    • Brox, T.1    Bourdev, L.D.2    Maji, S.3    Malik, J.4
  • 10
    • 84887341181 scopus 로고    scopus 로고
    • Tricos: A tri-level class-discriminative co-segmentation method for image classification
    • Y. Chai, E. Rahtu, V. Lempitsky, L. V. Gool, and A. Zisserman. Tricos: A tri-level class-discriminative co-segmentation method for image classification. In ECCV, 2012.
    • (2012) ECCV
    • Chai, Y.1    Rahtu, E.2    Lempitsky, V.3    Gool, L.V.4    Zisserman, A.5
  • 11
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 12
    • 34948855941 scopus 로고    scopus 로고
    • An exemplar model for learning object classes
    • O. Chum and A. Zisserman. An exemplar model for learning object classes. In CVPR, 2007.
    • (2007) CVPR
    • Chum, O.1    Zisserman, A.2
  • 16
    • 67650394405 scopus 로고    scopus 로고
    • Synergy between object recognition and image segmentation using the expectation-maximization algorithm
    • I. Kokkinos and P. Maragos. Synergy between object recognition and image segmentation using the expectation-maximization algorithm. PAMI, 2009.
    • (2009) PAMI
    • Kokkinos, I.1    Maragos, P.2
  • 18
    • 24644437018 scopus 로고    scopus 로고
    • Interleaved object categorization and segmentation
    • B. Leibe and B. Schiele. Interleaved object categorization and segmentation. In BMVC, 2003.
    • (2003) BMVC
    • Leibe, B.1    Schiele, B.2
  • 19
    • 34548799026 scopus 로고    scopus 로고
    • Learning to combine bottom-up and top-down segmentation
    • A. Levin and Y. Weiss. Learning to combine bottom-up and top-down segmentation. In ECCV, 2006.
    • (2006) ECCV
    • Levin, A.1    Weiss, Y.2
  • 20
    • 84856631928 scopus 로고    scopus 로고
    • Object detection and segmentation from joint embedding of parts and pixels
    • M. Maire, S. X. Yu, and P. Perona. Object detection and segmentation from joint embedding of parts and pixels. In ICCV, 2011.
    • (2011) ICCV
    • Maire, M.1    Yu, S.X.2    Perona, P.3
  • 21
    • 77953182042 scopus 로고    scopus 로고
    • Weakly supervised discriminative localization and classification: A joint learning process
    • M. H. Nguyen, L. Torresani, F. de la Torre, and C. Rother. Weakly supervised discriminative localization and classification: a joint learning process. In ICCV, 2009.
    • (2009) ICCV
    • Nguyen, M.H.1    Torresani, L.2    De La Torre, F.3    Rother, C.4
  • 22
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • M. E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In ICVGIP, 2008.
    • (2008) ICVGIP
    • Nilsback, M.E.1    Zisserman, A.2
  • 23
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011.
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 25
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Śanchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2011) ECCV
    • Perronnin, F.1    Śanchez, J.2    Mensink, T.3
  • 26
    • 34948910140 scopus 로고    scopus 로고
    • Using segmentation to verify object hypotheses
    • D. Ramanan. Using segmentation to verify object hypotheses. In CVPR, 2007.
    • (2007) CVPR
    • Ramanan, D.1
  • 27
    • 12844262766 scopus 로고    scopus 로고
    • Grabcut": Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. "grabcut": interactive foreground extraction using iterated graph cuts. ACM Trans. Graph., 23(3), 2004.
    • (2004) ACM Trans. Graph. , vol.23 , pp. 3
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 28
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of midlevel discriminative patches
    • S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of midlevel discriminative patches. In ECCV, 2012.
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.A.3
  • 29
    • 77955996870 scopus 로고    scopus 로고
    • Localityconstrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong. Localityconstrained linear coding for image classification. In CVPR, 2010.
    • (2011) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.S.5    Gong, Y.6
  • 31
    • 33745948591 scopus 로고    scopus 로고
    • Locus: Learning object classes with unsupervised segmentation
    • J. M. Winn and N. Jojic. Locus: Learning object classes with unsupervised segmentation. In ICCV, 2005.
    • (2005) ICCV
    • Winn, J.M.1    Jojic, N.2
  • 32
    • 84877743496 scopus 로고    scopus 로고
    • Unsupervised template learning for fine-grained object recognition
    • S. Yang, L. Bo, J. Wang, and L. G. Shapiro. Unsupervised template learning for fine-grained object recognition. In NIPS, 2012.
    • (2012) NIPS
    • Yang, S.1    Bo, L.2    Wang, J.3    Shapiro, L.G.4
  • 33
    • 84866665892 scopus 로고    scopus 로고
    • A codebook-free and annotationfree approach for fine-grained image categorization
    • B. Yao, G. Bradski, and L. Fei-Fei. A codebook-free and annotationfree approach for fine-grained image categorization. In CVPR, 2012.
    • (2012) CVPR
    • Yao, B.1    Bradski, G.2    Fei-Fei, L.3
  • 34
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine-grained image categorization
    • B. Yao, A. Khosla, and F.-F. Li. Combining randomization and discrimination for fine-grained image categorization. In CVPR, 2011.
    • (2011) CVPR
    • Yao, B.1    Khosla, A.2    Li, F.-F.3
  • 35
    • 84866662426 scopus 로고    scopus 로고
    • Pose pooling kernels for subcategory recognition
    • N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for subcategory recognition. In CVPR, 2012.
    • (2012) CVPR
    • Zhang, N.1    Farrell, R.2    Darrell, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.