메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2399-2406

Multiple granularity descriptors for fine-grained categorization

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE SEGMENTATION;

EID: 84973862339     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.276     Document Type: Conference Paper
Times cited : (262)

References (38)
  • 1
    • 84887340679 scopus 로고    scopus 로고
    • Efficient object detection and segmentation for fine-grained recognition
    • A. Angelova and S. Zhu. Efficient object detection and segmentation for fine-grained recognition. In CVPR, 2013.
    • (2013) CVPR
    • Angelova, A.1    Zhu, S.2
  • 2
    • 84887356895 scopus 로고    scopus 로고
    • Poof: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation
    • T. Berg and P. N. Belhumeur. Poof: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013.
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 4
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 5
    • 84919741208 scopus 로고    scopus 로고
    • Bird species categorization using pose normalized deep convolutional nets
    • S. Branson, G. Van Horn, S. Belongie, and P. Perona. Bird species categorization using pose normalized deep convolutional nets. BMVC, 2014.
    • (2014) BMVC
    • Branson, S.1    Van Horn, G.2    Belongie, S.3    Perona, P.4
  • 6
    • 0029869455 scopus 로고    scopus 로고
    • A model for inhibitory lateral interaction effects in perceived contrast
    • M. W. Cannon and S. C. Fullenkamp. A model for inhibitory lateral interaction effects in perceived contrast. Vision research, 1996.
    • (1996) Vision Research
    • Cannon, M.W.1    Fullenkamp, S.C.2
  • 7
    • 84898771336 scopus 로고    scopus 로고
    • Symbiotic segmentation and part localization for fine-grained categorization
    • Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic segmentation and part localization for fine-grained categorization. In ICCV, 2013.
    • (2013) ICCV
    • Chai, Y.1    Lempitsky, V.2    Zisserman, A.3
  • 11
    • 84887325349 scopus 로고    scopus 로고
    • Fine-grained crowdsourcing for fine-grained recognition
    • J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained recognition. In CVPR, 2013.
    • (2013) CVPR
    • Deng, J.1    Krause, J.2    Fei-Fei, L.3
  • 12
    • 84856640018 scopus 로고    scopus 로고
    • Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
    • R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In ICCV, 2011.
    • (2011) ICCV
    • Farrell, R.1    Oza, O.2    Zhang, N.3    Morariu, V.I.4    Darrell, T.5    Davis, L.S.6
  • 15
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. TPAMI, 1998.
    • (1998) TPAMI
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 20
    • 0040090640 scopus 로고    scopus 로고
    • Effects of knowledge and development on subordinate level categorization
    • K. E. Johnson and A. T. Eilers. Effects of knowledge and development on subordinate level categorization. Cognitive Development, 1998.
    • (1998) Cognitive Development
    • Johnson, K.E.1    Eilers, A.T.2
  • 21
    • 84866702548 scopus 로고    scopus 로고
    • Novel dataset for fine-grained image categorization: Stanford dogs
    • A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel dataset for fine-grained image categorization: Stanford dogs. In CVPRW, 2011.
    • (2011) CVPRW
    • Khosla, A.1    Jayadevaprakash, N.2    Yao, B.3    Li, F.-F.4
  • 22
    • 84959232423 scopus 로고    scopus 로고
    • Fine-grained recognition without part annotations
    • J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained recognition without part annotations. In CVPR, 2015.
    • (2015) CVPR
    • Krause, J.1    Jin, H.2    Yang, J.3    Fei-Fei, L.4
  • 23
    • 84897485170 scopus 로고    scopus 로고
    • 3d object representations for fine-grained categorization
    • J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained categorization. In ICCVW, 2013.
    • (2013) ICCVW
    • Krause, J.1    Stark, M.2    Deng, J.3    Fei-Fei, L.4
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 26
    • 84959188579 scopus 로고    scopus 로고
    • Deep lac: Deep localization, alignment and classification for fine-grained recognition
    • D. Lin, X. Shen, C. Lu, and J. Jia. Deep lac: Deep localization, alignment and classification for fine-grained recognition. In CVPR, 2015.
    • (2015) CVPR
    • Lin, D.1    Shen, X.2    Lu, C.3    Jia, J.4
  • 29
    • 84908537903 scopus 로고    scopus 로고
    • Cnn features off-the-shelf: An astounding baseline for recognition
    • A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: An astounding baseline for recognition. In CVPRW, 2014.
    • (2014) CVPRW
    • Razavian, A.1    Azizpour, H.2    Sullivan, J.3    Carlsson, S.4
  • 31
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 33
    • 61449095935 scopus 로고    scopus 로고
    • Star shape prior for graph-cut image segmentation
    • O. Veksler. Star shape prior for graph-cut image segmentation. In ECCV. 2008.
    • (2008) ECCV
    • Veksler, O.1
  • 35
    • 84959255406 scopus 로고    scopus 로고
    • The application of two-level attention models in deep convolutional neural network for fine-grained image classification
    • T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang. The application of two-level attention models in deep convolutional neural network for fine-grained image classification. CVPR, 2015.
    • (2015) CVPR
    • Xiao, T.1    Xu, Y.2    Yang, K.3    Zhang, J.4    Peng, Y.5    Zhang, Z.6
  • 36
    • 84956617559 scopus 로고    scopus 로고
    • Partbased r-cnns for fine-grained category detection
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased r-cnns for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 37
    • 84866662426 scopus 로고    scopus 로고
    • Pose pooling kernels for sub-category recognition
    • N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for sub-category recognition. In CVPR, 2012.
    • (2012) CVPR
    • Zhang, N.1    Farrell, R.2    Darrell, T.3
  • 38
    • 84898819241 scopus 로고    scopus 로고
    • Deformable part descriptors for fine-grained recognition and attribute prediction
    • N. Zhang, R. Farrell, F. Iandola, and T. Darrell. Deformable part descriptors for fine-grained recognition and attribute prediction. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, N.1    Farrell, R.2    Iandola, F.3    Darrell, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.