메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2489-2496

Nonparametric part transfer for fine-grained recognition

Author keywords

bird classification; fine grained recognition; part detection; visual recognition

Indexed keywords

BENCHMARKING; BIRDS; IMAGE SEGMENTATION; ITERATIVE METHODS;

EID: 84911449570     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.319     Document Type: Conference Paper
Times cited : (96)

References (42)
  • 1
    • 84887340679 scopus 로고    scopus 로고
    • Efficient object detection and segmentation for fine-grained recognition
    • A. Angelova and S. Zhu. Efficient object detection and segmentation for fine-grained recognition. In CVPR, 2013.
    • (2013) CVPR
    • Angelova, A.1    Zhu, S.2
  • 2
    • 84887569228 scopus 로고    scopus 로고
    • Localizing parts of faces using a consensus of exemplars
    • P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. Localizing parts of faces using a consensus of exemplars. PAMI, 35(12):2930-2940, 2013.
    • (2013) PAMI , vol.35 , Issue.12 , pp. 2930-2940
    • Belhumeur, P.N.1    Jacobs, D.W.2    Kriegman, D.J.3    Kumar, N.4
  • 3
    • 84887356895 scopus 로고    scopus 로고
    • Poof: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation
    • T. Berg and P. N. Belhumeur. Poof: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013.
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 5
    • 84856684024 scopus 로고    scopus 로고
    • Strong supervision from weak annotation: Interactive training of deformable part models
    • S. Branson, P. Perona, and S. Belongie. Strong supervision from weak annotation: Interactive training of deformable part models. In ICCV, 2011.
    • (2011) ICCV
    • Branson, S.1    Perona, P.2    Belongie, S.3
  • 6
    • 84856668103 scopus 로고    scopus 로고
    • Bicos: A bi-level co-segmentation method for image classification
    • Y. Chai, V. S. Lempitsky, and A. Zisserman. Bicos: A bi-level co-segmentation method for image classification. In ICCV, pages 2579-2586, 2011.
    • (2011) ICCV , pp. 2579-2586
    • Chai, Y.1    Lempitsky, V.S.2    Zisserman, A.3
  • 7
    • 84867845546 scopus 로고    scopus 로고
    • Tricos: A tri-level class-discriminative co-segmentation method for image classification
    • Y. Chai, E. Rahtu, V. S. Lempitsky, L. J. V. Gool, and A. Zisserman. Tricos: A tri-level class-discriminative co-segmentation method for image classification. In ECCV, pages 794-807, 2012.
    • (2012) ECCV , pp. 794-807
    • Chai, Y.1    Rahtu, E.2    Lempitsky, V.S.3    Gool, L.J.V.4    Zisserman, A.5
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, pages 886-893, 2005.
    • (2005) CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 9
    • 84911421023 scopus 로고    scopus 로고
    • Fine-grained crowdsourcing for fine-grained recognition
    • June
    • J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained recognition. In IEEE CVPR, June 2013.
    • (2013) IEEE CVPR
    • Deng, J.1    Krause, J.2    Fei-Fei, L.3
  • 11
    • 84866719272 scopus 로고    scopus 로고
    • Discovering localized attributes for fine-grained recognition
    • K. Duan, D. Parikh, D. J. Crandall, and K. Grauman. Discovering localized attributes for fine-grained recognition. In CVPR, pages 3474-3481, 2012.
    • (2012) CVPR , pp. 3474-3481
    • Duan, K.1    Parikh, D.2    Crandall, D.J.3    Grauman, K.4
  • 13
    • 84911402698 scopus 로고    scopus 로고
    • Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
    • R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In ICCV, 2009.
    • (2009) ICCV
    • Farrell, R.1    Oza, O.2    Zhang, N.3    Morariu, V.I.4    Darrell, T.5    Davis, L.S.6
  • 14
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ra-manan. Object detection with discriminatively trained part-based models. PAMI, 32(9):1627-1645, 2010.
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.A.3    Ra-Manan, D.4
  • 15
    • 84886390740 scopus 로고    scopus 로고
    • Labeling examples that matter: Relevance-based active learning with gaussian processes
    • A. Freytag, E. Rodner, P. Bodesheim, and J. Denzler. Labeling examples that matter: Relevance-based active learning with gaussian processes. In GCPR, pages 282-291, 2013.
    • (2013) GCPR , pp. 282-291
    • Freytag, A.1    Rodner, E.2    Bodesheim, P.3    Denzler, J.4
  • 18
    • 85162523582 scopus 로고    scopus 로고
    • Portmanteau vocabularies for multi-cue image representation
    • J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors
    • F. S. Khan, J. van de Weijer, A. D. Bagdanov, and M. Vanrell. Portmanteau vocabularies for multi-cue image representation. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, NIPS, pages 1323-1331, 2011.
    • (2011) NIPS , pp. 1323-1331
    • Khan, F.S.1    Weijer De J.Van2    Bagdanov, A.D.3    Vanrell, M.4
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 80054898486 scopus 로고    scopus 로고
    • Nonparametric scene parsing via label transfer
    • C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. PAMI, 33(12):2368-2382, 2011.
    • (2011) PAMI , vol.33 , Issue.12 , pp. 2368-2382
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 21
    • 84898818161 scopus 로고    scopus 로고
    • Bird part localization using exemplar-based models with enforced pose and subcategory consistency
    • J. Liu and P. N. Belhumeur. Bird part localization using exemplar-based models with enforced pose and subcategory consistency. In ICCV, 2013.
    • (2013) ICCV
    • Liu, J.1    Belhumeur, P.N.2
  • 22
    • 84867868885 scopus 로고    scopus 로고
    • Dog breed classification using part localization
    • J. Liu, A. Kanazawa, D. W. Jacobs, and P. N. Belhumeur. Dog breed classification using part localization. In ECCV, pages 172-185, 2012.
    • (2012) ECCV , pp. 172-185
    • Liu, J.1    Kanazawa, A.2    Jacobs, D.W.3    Belhumeur, P.N.4
  • 23
    • 84863411575 scopus 로고    scopus 로고
    • Ensemble of exemplar-svms for object detection and beyond
    • T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and beyond. In ICCV, 2011.
    • (2011) ICCV
    • Malisiewicz, T.1    Gupta, A.2    Efros, A.A.3
  • 25
    • 77649336981 scopus 로고    scopus 로고
    • Delving deeper into the whorl of flower segmentation
    • M.-E. Nilsback and A. Zisserman. Delving deeper into the whorl of flower segmentation. Image Vision Comput., 28(6):1049-1062, 2010.
    • (2010) Image Vision Comput. , vol.28 , Issue.6 , pp. 1049-1062
    • Nilsback, M.-E.1    Zisserman, A.2
  • 26
    • 84911416625 scopus 로고    scopus 로고
    • A. of European Records and R. Committees
    • A. of European Records and R. Committees. Taxonomic recommendations, 2003.
    • (2003) Taxonomic Recommendations
  • 28
    • 84877632511 scopus 로고    scopus 로고
    • "grabcut": Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. "grabcut": interactive foreground extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309-314, 2004.
    • (2004) ACM Trans. Graph. , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 29
    • 34547696888 scopus 로고    scopus 로고
    • Handling missing values when applying classification models
    • M. Saar-Tsechansky and F. Provost. Handling missing values when applying classification models. JMLR, 8:1625-1657, 2007.
    • (2007) JMLR , vol.8 , pp. 1625-1657
    • Saar-Tsechansky, M.1    Provost, F.2
  • 31
    • 77955426203 scopus 로고    scopus 로고
    • Evaluating color descriptors for object and scene recognition
    • K. E. A. van de Sande, T. Gevers, and C. G. Snoek. Evaluating color descriptors for object and scene recognition. PAMI, 32(9):1582-1596, 2010.
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1582-1596
    • Van De Sande, K.E.A.1    Gevers, T.2    Snoek, C.G.3
  • 33
    • 77953196456 scopus 로고    scopus 로고
    • Multiple kernels for object detection
    • A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection. In ICCV, pages 606-613, 2009.
    • (2009) ICCV , pp. 606-613
    • Vedaldi, A.1    Gulshan, V.2    Varma, M.3    Zisserman, A.4
  • 34
    • 84856194352 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. PAMI, 34(3):480-493, 2012.
    • (2012) PAMI , vol.34 , Issue.3 , pp. 480-493
    • Vedaldi, A.1    Zisserman, A.2
  • 35
    • 84856635994 scopus 로고    scopus 로고
    • Multiclass recognition and part localization with humans in the loop
    • C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recognition and part localization with humans in the loop. In ICCV, 2011.
    • (2011) ICCV
    • Wah, C.1    Branson, S.2    Perona, P.3    Belongie, S.4
  • 38
    • 84877743496 scopus 로고    scopus 로고
    • Unsupervised template learning for fine-grained object recognition
    • S. Yang, L. Bo, J. Wang, and L. Shapiro. Unsupervised template learning for fine-grained object recognition. In NIPS, 2012.
    • (2012) NIPS
    • Yang, S.1    Bo, L.2    Wang, J.3    Shapiro, L.4
  • 39
    • 84866665892 scopus 로고    scopus 로고
    • A codebook-free and annotation-free approach for fine-grained image categorization
    • B. Yao, G. Bradski, and L. Fei-Fei. A codebook-free and annotation-free approach for fine-grained image categorization. In CVPR, 2012.
    • (2012) CVPR
    • Yao, B.1    Bradski, G.2    Fei-Fei, L.3
  • 40
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine-grained image categorization
    • B. Yao, A. Khosla, and F.-F. Li. Combining randomization and discrimination for fine-grained image categorization. In CVPR, pages 1577-1584, 2011.
    • (2011) CVPR , pp. 1577-1584
    • Yao, B.1    Khosla, A.2    Li, F.-F.3
  • 41
    • 84866662426 scopus 로고    scopus 로고
    • Pose pooling kernels for sub-category recognition
    • N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for sub-category recognition. In CVPR, pages 3665-3672, 2012.
    • (2012) CVPR , pp. 3665-3672
    • Zhang, N.1    Farrell, R.2    Darrell, T.3
  • 42
    • 84898819241 scopus 로고    scopus 로고
    • Deformable part descriptors for fine-grained recognition and attribute prediction
    • N. Zhang, R. Farrell, F. Iandola, and T. Darrell. Deformable part descriptors for fine-grained recognition and attribute prediction. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, N.1    Farrell, R.2    Iandola, F.3    Darrell, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.