메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7

Author keywords

Ethanol productivity; Ethanol titers; Ethanol tolerance; Global transcription machinery engineering (gTME); Oxidative tolerance; RNA polymerase II; Subunit Rpb7; Transcriptional engineering; VHG fermentation

Indexed keywords

FERMENTATION; GENE EXPRESSION; GENES; MACHINERY; NUCLEIC ACIDS; POLYMERASE CHAIN REACTION; POLYMERS; PRODUCTIVITY; RNA; TRANSCRIPTION; YEAST;

EID: 85020862104     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-017-0806-0     Document Type: Article
Times cited : (57)

References (55)
  • 1
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • 1:CAS:528:DC%2BD28Xht1OntL%2FP
    • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314:1565-8.
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 2
    • 33847083318 scopus 로고    scopus 로고
    • Global transcription machinery engineering: A new approach for improving cellular phenotype
    • 1:CAS:528:DC%2BD2sXlvFSisr0%3D
    • Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007;9:258-67.
    • (2007) Metab Eng , vol.9 , pp. 258-267
    • Alper, H.1    Stephanopoulos, G.2
  • 3
    • 0035010476 scopus 로고    scopus 로고
    • Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD3MXjvVSjtbk%3D
    • Ansanay-Galeote V, Blondin B, Dequin S, Sablayrolles JM. Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol Lett. 2001;23:677-81.
    • (2001) Biotechnol Lett , vol.23 , pp. 677-681
    • Ansanay-Galeote, V.1    Blondin, B.2    Dequin, S.3    Sablayrolles, J.M.4
  • 4
    • 0037495037 scopus 로고    scopus 로고
    • Architecture of initiation-competent 12-subunit RNA polymerase II
    • 1:CAS:528:DC%2BD3sXkslOntLw%3D
    • Armache KJ, Kettenberger H, Cramer P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc Natl Acad Sci USA. 2003;100:6964-8.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 6964-6968
    • Armache, K.J.1    Kettenberger, H.2    Cramer, P.3
  • 5
    • 36349013043 scopus 로고    scopus 로고
    • Ethanol fermentation technologies from sugar and starch feedstocks
    • 1:CAS:528:DC%2BD2sXhtlGnsrfJ
    • Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv. 2008;26:89-105.
    • (2008) Biotechnol Adv , vol.26 , pp. 89-105
    • Bai, F.W.1    Anderson, W.A.2    Moo-Young, M.3
  • 6
    • 2442528647 scopus 로고    scopus 로고
    • Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions
    • 1:CAS:528:DC%2BD2cXkt1aks7Y%3D
    • Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J Biotechnol. 2004;110:287-93.
    • (2004) J Biotechnol , vol.110 , pp. 287-293
    • Bai, F.W.1    Chen, L.J.2    Zhang, Z.3    Anderson, W.A.4    Moo-Young, M.5
  • 7
    • 77954656041 scopus 로고    scopus 로고
    • An improved yeast transformation method for the generation of very large human antibody libraries
    • 1:CAS:528:DC%2BC3cXjslejuro%3D
    • Benatuil L, Perez JM, Belk J, Hsieh CM. An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel. 2010;23:155-9.
    • (2010) Protein Eng des Sel , vol.23 , pp. 155-159
    • Benatuil, L.1    Perez, J.M.2    Belk, J.3    Hsieh, C.M.4
  • 8
    • 84899488586 scopus 로고    scopus 로고
    • Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production
    • 1:CAS:528:DC%2BC2cXhsl2nsLg%3D
    • Cao TS, Chi Z, Liu GL, Chi ZM. Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production. Mol Biotechnol. 2014;56:72-8.
    • (2014) Mol Biotechnol , vol.56 , pp. 72-78
    • Cao, T.S.1    Chi, Z.2    Liu, G.L.3    Chi, Z.M.4
  • 9
    • 79251567415 scopus 로고    scopus 로고
    • Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli
    • Chen T, Wang J, Yang R, Li J, Lin M, Lin Z. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS ONE. 2011;6:16228.
    • (2011) PLoS ONE , vol.6 , pp. 16228
    • Chen, T.1    Wang, J.2    Yang, R.3    Li, J.4    Lin, M.5    Lin, Z.6
  • 10
    • 8544251268 scopus 로고    scopus 로고
    • Rpb4 and Rpb7: Subunits of RNA polymerase II and beyond
    • 1:CAS:528:DC%2BD2cXpslGis7g%3D
    • Choder M. Rpb4 and Rpb7: subunits of RNA polymerase II and beyond. Trends Biochem Sci. 2004;29:674-81.
    • (2004) Trends Biochem Sci , vol.29 , pp. 674-681
    • Choder, M.1
  • 11
    • 84894268220 scopus 로고    scopus 로고
    • Enhancing E. Coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP)
    • 1:CAS:528:DC%2BC3sXhslaqsLvM
    • Chong H, Geng H, Zhang H, Song H, Huang L, Jiang R. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Biotechnol Bioeng. 2014;111:700-8.
    • (2014) Biotechnol Bioeng , vol.111 , pp. 700-708
    • Chong, H.1    Geng, H.2    Zhang, H.3    Song, H.4    Huang, L.5    Jiang, R.6
  • 12
    • 84885035726 scopus 로고    scopus 로고
    • Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)
    • 1:CAS:528:DC%2BC3sXjvFKhtLw%3D
    • Chong H, Huang L, Yeow J, Wang I, Zhang H, Song H, Jiang R. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS ONE. 2013;8:e57628.
    • (2013) PLoS ONE , vol.8 , pp. e57628
    • Chong, H.1    Huang, L.2    Yeow, J.3    Wang, I.4    Zhang, H.5    Song, H.6    Jiang, R.7
  • 13
    • 0030997844 scopus 로고    scopus 로고
    • Mitochondria1 superoxide disrnutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase
    • 1:CAS:528:DyaK2sXjsFWgtrc%3D
    • Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P. Mitochondria1 superoxide disrnutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology. 1997;143:1649-56.
    • (1997) Microbiology , vol.143 , pp. 1649-1656
    • Costa, V.1    Amorim, M.A.2    Reis, E.3    Quintanilha, A.4    Moradas-Ferreira, P.5
  • 14
    • 0034724953 scopus 로고    scopus 로고
    • Architecture of RNA polymerase II and implications for the transcription mechanism
    • 1:CAS:528:DC%2BD3cXivFCiur8%3D
    • Cramer P. Architecture of RNA polymerase II and implications for the transcription mechanism. Science. 2000;288:640-9.
    • (2000) Science , vol.288 , pp. 640-649
    • Cramer, P.1
  • 15
    • 1942535198 scopus 로고    scopus 로고
    • RNA polymerase II structure: From core to functional complexes
    • 1:CAS:528:DC%2BD2cXivVKku78%3D
    • Cramer P. RNA polymerase II structure: from core to functional complexes. Curr Opin Genet Dev. 2004;14:218-26.
    • (2004) Curr Opin Genet Dev , vol.14 , pp. 218-226
    • Cramer, P.1
  • 16
    • 33644932478 scopus 로고    scopus 로고
    • Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase i and of the mitochondrial functional state
    • 1:CAS:528:DC%2BD28XitlGksr0%3D
    • Demasi AP, Pereira GA, Netto LE. Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J. 2006;273:805-16.
    • (2006) FEBS J , vol.273 , pp. 805-816
    • Demasi, A.P.1    Pereira, G.A.2    Netto, L.E.3
  • 17
    • 34250792218 scopus 로고    scopus 로고
    • N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species
    • 1:CAS:528:DC%2BD2sXmvVKnt7w%3D
    • Du X, Takagi H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol. 2007;75:1343-51.
    • (2007) Appl Microbiol Biotechnol , vol.75 , pp. 1343-1351
    • Du, X.1    Takagi, H.2
  • 19
    • 78149478886 scopus 로고    scopus 로고
    • RNA polymerase II subunits link transcription and mRNA decay to translation
    • 1:CAS:528:DC%2BC3cXhsVahtbvM
    • Harel-Sharvit L, Eldad N, Haimovich G, Barkai O, Duek L, Choder M. RNA polymerase II subunits link transcription and mRNA decay to translation. Cell. 2010;143:552-63.
    • (2010) Cell , vol.143 , pp. 552-563
    • Harel-Sharvit, L.1    Eldad, N.2    Haimovich, G.3    Barkai, O.4    Duek, L.5    Choder, M.6
  • 20
    • 84871917876 scopus 로고    scopus 로고
    • Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains
    • 1:CAS:528:DC%2BC3sXkvVKjs7g%3D
    • Henderson CM, Lozada-Contreras M, Jiranek V, Longo ML, Block DE. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Appl Environ Microbiol. 2013;79:91-104.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 91-104
    • Henderson, C.M.1    Lozada-Contreras, M.2    Jiranek, V.3    Longo, M.L.4    Block, D.E.5
  • 21
    • 84863011639 scopus 로고    scopus 로고
    • Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device
    • Hong SH, Hegde M, Kim J, Wang X, Jayaraman A, Wood TK. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat Commun. 2012;3:613.
    • (2012) Nat Commun , vol.3 , pp. 613
    • Hong, S.H.1    Hegde, M.2    Kim, J.3    Wang, X.4    Jayaraman, A.5    Wood, T.K.6
  • 22
    • 77953577305 scopus 로고    scopus 로고
    • Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli
    • 1:CAS:528:DC%2BC3cXlslajtLY%3D
    • Hong SH, Wang X, Wood TK. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli. Microb Biotechnol. 2010;3:344-56.
    • (2010) Microb Biotechnol , vol.3 , pp. 344-356
    • Hong, S.H.1    Wang, X.2    Wood, T.K.3
  • 23
    • 0029844594 scopus 로고    scopus 로고
    • Importance of catalase in the adaptive response to hydrogen peroxide
    • Izawa S, Inoue Y, Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide. Biochem J. 1996;15:61-7.
    • (1996) Biochem J , vol.15 , pp. 61-67
    • Izawa, S.1    Inoue, Y.2    Kimura, A.3
  • 25
    • 28444455642 scopus 로고    scopus 로고
    • Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2MXht1OqsbjF
    • Jung YJ, Park HD. Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae. Biotechnol Lett. 2005;27:1855-9.
    • (2005) Biotechnol Lett , vol.27 , pp. 1855-1859
    • Jung, Y.J.1    Park, H.D.2
  • 26
    • 79951769821 scopus 로고    scopus 로고
    • Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation
    • 1:CAS:528:DC%2BC3MXitFGnt70%3D
    • Kim HS, Kim NR, Choi W. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation. Biotechnol Lett. 2011;33:509-15.
    • (2011) Biotechnol Lett , vol.33 , pp. 509-515
    • Kim, H.S.1    Kim, N.R.2    Choi, W.3
  • 27
    • 65549147541 scopus 로고    scopus 로고
    • Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes
    • 1:CAS:528:DC%2BD1MXlvFWiurY%3D
    • Klein-Marcuschamer D, Santos CN, Yu H, Stephanopoulos G. Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl Environ Microbiol. 2009;75:2705-11.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2705-2711
    • Klein-Marcuschamer, D.1    Santos, C.N.2    Yu, H.3    Stephanopoulos, G.4
  • 28
    • 0028347674 scopus 로고
    • An RNA polymerase II holoenzyme responsive to activators
    • 1:CAS:528:DyaK2cXkslKrs7s%3D
    • Koleske AJ, Young RA. An RNA polymerase II holoenzyme responsive to activators. Nature. 1994;368:466-9.
    • (1994) Nature , vol.368 , pp. 466-469
    • Koleske, A.J.1    Young, R.A.2
  • 29
    • 84907518524 scopus 로고    scopus 로고
    • Biofuels. Engineering alcohol tolerance in yeast
    • 1:CAS:528:DC%2BC2cXhs1CitLrM
    • Lam FH, Ghaderi A, Fink GR, Stephanopoulos G. Biofuels. Engineering alcohol tolerance in yeast. Science. 2014;346:71-5.
    • (2014) Science , vol.346 , pp. 71-75
    • Lam, F.H.1    Ghaderi, A.2    Fink, G.R.3    Stephanopoulos, G.4
  • 30
    • 84882565642 scopus 로고    scopus 로고
    • Engineering of transcriptional regulators enhances microbial stress tolerance
    • 1:CAS:528:DC%2BC3sXktlKmsbw%3D
    • Lin Z, Zhang Y, Wang J. Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnol Adv. 2013;31:986-91.
    • (2013) Biotechnol Adv , vol.31 , pp. 986-991
    • Lin, Z.1    Zhang, Y.2    Wang, J.3
  • 31
    • 79960095900 scopus 로고    scopus 로고
    • GTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate
    • 1:CAS:528:DC%2BC3MXnslSgu7s%3D
    • Liu H, Liu K, Yan M, Xu L, Ouyang P. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl Biochem Biotechnol. 2011;164:1150-9.
    • (2011) Appl Biochem Biotechnol , vol.164 , pp. 1150-1159
    • Liu, H.1    Liu, K.2    Yan, M.3    Xu, L.4    Ouyang, P.5
  • 32
    • 34748850800 scopus 로고    scopus 로고
    • The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms
    • 1:CAS:528:DC%2BD2sXhtFahsr%2FO
    • Lotan R, Goler-Baron V, Duek L, Haimovich G, Choder M. The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms. J Cell Biol. 2007;178:1133-43.
    • (2007) J Cell Biol , vol.178 , pp. 1133-1143
    • Lotan, R.1    Goler-Baron, V.2    Duek, L.3    Haimovich, G.4    Choder, M.5
  • 33
    • 28544436370 scopus 로고    scopus 로고
    • Crystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase II
    • 1:CAS:528:DC%2BD2MXht1entLbK
    • Meka H, Werner F, Cordell SC, Onesti S, Brick P. Crystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase II. Nucleic Acids Res. 2005;33:6435-44.
    • (2005) Nucleic Acids Res , vol.33 , pp. 6435-6444
    • Meka, H.1    Werner, F.2    Cordell, S.C.3    Onesti, S.4    Brick, P.5
  • 34
    • 84871247270 scopus 로고    scopus 로고
    • Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus
    • 1:CAS:528:DC%2BC38XhsFGitbzN
    • Moon MH, Ryu J, Choeng YH, Hong SK, Kang HA, Chang YK. Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus. Biotechnol Bioprocess Eng. 2012;17:986-96.
    • (2012) Biotechnol Bioprocess Eng , vol.17 , pp. 986-996
    • Moon, M.H.1    Ryu, J.2    Choeng, Y.H.3    Hong, S.K.4    Kang, H.A.5    Chang, Y.K.6
  • 36
    • 0032865543 scopus 로고    scopus 로고
    • Function and regulation of yeast hexose transporters
    • Özcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev. 1999;63:554-69.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 554-569
    • Özcan, S.1    Johnston, M.2
  • 37
    • 84879626192 scopus 로고    scopus 로고
    • Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast
    • 1:CAS:528:DC%2BC3sXhtFGjsLjN
    • Pais TM, Foulquie-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet. 2013;9:e1003548.
    • (2013) PLoS Genet , vol.9 , pp. e1003548
    • Pais, T.M.1    Foulquie-Moreno, M.R.2    Hubmann, G.3    Duitama, J.4    Swinnen, S.5    Goovaerts, A.6    Yang, Y.7    Dumortier, F.8    Thevelein, J.M.9
  • 38
    • 10744225041 scopus 로고    scopus 로고
    • Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors
    • 1:CAS:528:DC%2BD3sXns1Clsbo%3D
    • Park KS, Lee DK, Lee H, Lee Y, Jang YS, Kim YH, Yang HY, Lee SI, Seol W, Kim JS. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol. 2003;21:1208-14.
    • (2003) Nat Biotechnol , vol.21 , pp. 1208-1214
    • Park, K.S.1    Lee, D.K.2    Lee, H.3    Lee, Y.4    Jang, Y.S.5    Kim, Y.H.6    Yang, H.Y.7    Lee, S.I.8    Seol, W.9    Kim, J.S.10
  • 39
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • 1:CAS:528:DyaK2sXhtFOmuro%3D
    • Pronk JT, Steensmays HY, Dijken JPV. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast. 1996;12:1607-33.
    • (1996) Yeast , vol.12 , pp. 1607-1633
    • Pronk, J.T.1    Steensmays, H.Y.2    Dijken, J.P.V.3
  • 40
    • 84923804845 scopus 로고    scopus 로고
    • Structural basis of transcription initiation by RNA polymerase II
    • 1:CAS:528:DC%2BC2MXjtFenu70%3D
    • Sainsbury S, Bernecky C, Cramer P. Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol. 2015;16:129-43.
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 129-143
    • Sainsbury, S.1    Bernecky, C.2    Cramer, P.3
  • 41
    • 18244371928 scopus 로고    scopus 로고
    • Rpb4 and Rpb7: A sub-complex integral to multi-subunit RNA polymerases performs a multitude of functions
    • 1:CAS:528:DC%2BD2MXjvFaisL0%3D
    • Sampath V, Sadhale P. Rpb4 and Rpb7: a sub-complex integral to multi-subunit RNA polymerases performs a multitude of functions. IUBMB Life. 2005;57:93-102.
    • (2005) IUBMB Life , vol.57 , pp. 93-102
    • Sampath, V.1    Sadhale, P.2
  • 42
    • 0032963268 scopus 로고    scopus 로고
    • Rpb7 can interact with RNA polymerase II and support transcription during some stresses independently of Rpb4
    • 1:CAS:528:DyaK1MXit1amt74%3D
    • Sheffer A, Varon M, Choder M. Rpb7 can interact with RNA polymerase II and support transcription during some stresses independently of Rpb4. Mol Biol Cell. 1999;19:2672-80.
    • (1999) Mol Biol Cell , vol.19 , pp. 2672-2680
    • Sheffer, A.1    Varon, M.2    Choder, M.3
  • 44
    • 84898760087 scopus 로고    scopus 로고
    • Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress
    • Spencer J, Phister TG, Smart KA, Greetham D. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Res Notes. 2014;17:151.
    • (2014) BMC Res Notes. , vol.17 , pp. 151
    • Spencer, J.1    Phister, T.G.2    Smart, K.A.3    Greetham, D.4
  • 47
    • 0026883301 scopus 로고
    • Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation
    • 1:CAS:528:DyaK38XksVKlt7s%3D
    • Thatipamala R, Rohani S, Hill GA. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng. 1992;40:289-97
    • (1992) Biotechnol Bioeng , vol.40 , pp. 289-297
    • Thatipamala, R.1    Rohani, S.2    Hill, G.A.3
  • 48
    • 84856692159 scopus 로고    scopus 로고
    • Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes
    • 1:CAS:528:DC%2BC38XitVWqs7c%3D
    • Vanegas JM, Contreras MF, Faller R, Longo ML. Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J. 2012;102:507-16.
    • (2012) Biophys J , vol.102 , pp. 507-516
    • Vanegas, J.M.1    Contreras, M.F.2    Faller, R.3    Longo, M.L.4
  • 49
    • 33847785682 scopus 로고    scopus 로고
    • Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2sXisVShsbY%3D
    • Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2007;104:2402-7.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 2402-2407
    • Vemuri, G.N.1    Eiteman, M.A.2    McEwen, J.E.3    Olsson, L.4    Nielsen, J.5
  • 50
    • 0014876634 scopus 로고
    • Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae
    • 1:CAS:528:DyaE3MXhtlKqtLs%3D
    • Watson TG. Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J Gen Microbiol. 1970;64:91-9.
    • (1970) J Gen Microbiol , vol.64 , pp. 91-99
    • Watson, T.G.1
  • 51
    • 0037085384 scopus 로고    scopus 로고
    • Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress
    • 1:CAS:528:DC%2BD38XhsFCjsbg%3D
    • Wong CM, Zhou Y, Ng RW, Kung Hf HF, Jin DY. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J Biol Chem. 2002;277:5385-94.
    • (2002) J Biol Chem , vol.277 , pp. 5385-5394
    • Wong, C.M.1    Zhou, Y.2    Ng, R.W.3    Kung Hf, H.F.4    Jin, D.Y.5
  • 52
    • 0037154984 scopus 로고    scopus 로고
    • The RNA polymerase II machinery structure illuminates function
    • 1:CAS:528:DC%2BD38XhvF2jsr0%3D
    • Woychik NA, Hampsey M. The RNA polymerase II machinery structure illuminates function. Cell. 2002;108:453-63.
    • (2002) Cell , vol.108 , pp. 453-463
    • Woychik, N.A.1    Hampsey, M.2
  • 53
    • 84858439567 scopus 로고    scopus 로고
    • Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance
    • 1:CAS:528:DC%2BC3MXhs1Oiu7vK
    • Zhang H, Chong H, Ching CB, Jiang R. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng. 2012;109:1165-72.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 1165-1172
    • Zhang, H.1    Chong, H.2    Ching, C.B.3    Jiang, R.4
  • 54
    • 84900830533 scopus 로고    scopus 로고
    • Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering
    • 1:CAS:528:DC%2BC2cXktlWhsL8%3D
    • Zhao H, Li J, Han B, Li X, Chen J. Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering. J Ind Microbiol Biotechnol. 2014;41:869-78.
    • (2014) J Ind Microbiol Biotechnol , vol.41 , pp. 869-878
    • Zhao, H.1    Li, J.2    Han, B.3    Li, X.4    Chen, J.5
  • 55
    • 70349775063 scopus 로고    scopus 로고
    • Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
    • 1:CAS:528:DC%2BD1MXhtlCntr7P
    • Zhao XQ, Bai FW. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol. 2009;144:23-30.
    • (2009) J Biotechnol , vol.144 , pp. 23-30
    • Zhao, X.Q.1    Bai, F.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.