메뉴 건너뛰기




Volumn 2, Issue DEC, 2014, Pages

Metabolic network discovery by top-down and bottom-up approaches and paths for reconciliation

Author keywords

Active metabolic state; Constraint based models; Flux balance analysis; Metabolic network inference; Metabolome; Network biology; Reverse engineering

Indexed keywords

ACTIVE NETWORKS; BIOLOGY; GENES; PHYSIOLOGY; REVERSE ENGINEERING;

EID: 85020616962     PISSN: None     EISSN: 22964185     Source Type: Journal    
DOI: 10.3389/fbioe.2014.00062     Document Type: Review
Times cited : (25)

References (109)
  • 1
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
    • Agren, R., Bordel, S., Mardinoglu, A., Pornputtapong, N., Nookaew, I., and Nielsen, J. (2012). Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8:e1002518. doi: 10.1371/journal.pcbi.1002518
    • (2012) PLoS Comput. Biol , vol.8
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3    Pornputtapong, N.4    Nookaew, I.5    Nielsen, J.6
  • 2
    • 6044265058 scopus 로고    scopus 로고
    • Integration of gene expression data into genome-scale metabolic models
    • Åkesson, M., Förster, J., and Nielsen, J. (2004). Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6, 285-293. doi:10.1016/j.ymben.2003.12.002
    • (2004) Metab. Eng , vol.6 , pp. 285-293
    • Åkesson, M.1    Förster, J.2    Nielsen, J.3
  • 4
    • 84875317202 scopus 로고    scopus 로고
    • A systematic comparison of the MetaCyc and KEGG pathway databases
    • Altman, T., Travers, M., Kothari, A., Caspi, R., and Karp, P. D. (2013). A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics 14:112. doi:10.1186/1471-2105-14-112
    • (2013) BMC Bioinformatics , vol.14 , pp. 112
    • Altman, T.1    Travers, M.2    Kothari, A.3    Caspi, R.4    Karp, P.D.5
  • 5
    • 0036749170 scopus 로고    scopus 로고
    • Evolutionary modeling and inference of gene network
    • Ando, S., Sakamoto, E., and Iba, H. (2002). Evolutionary modeling and inference of gene network. Inf Sci. 145, 237-259. doi:10.1016/S0020-0255(02)00235-9
    • (2002) Inf Sci , vol.145 , pp. 237-259
    • Ando, S.1    Sakamoto, E.2    Iba, H.3
  • 6
    • 33845679072 scopus 로고    scopus 로고
    • Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions
    • Antoniewicz, M. R., Kelleher, J. K., and Stephanopoulos, G. (2007). Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9, 68-86. doi:10.1016/j.ymben.2006.09.001
    • (2007) Metab. Eng , vol.9 , pp. 68-86
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 7
    • 0000122278 scopus 로고
    • Statistical construction of chemical reaction mechanisms from measured time-series
    • Arkin, A., and Ross, J. (1995). Statistical construction of chemical reaction mechanisms from measured time-series. J. Phys. Chem. 99, 970-979. doi:10.1021/j100003a020
    • (1995) J. Phys. Chem , vol.99 , pp. 970-979
    • Arkin, A.1    Ross, J.2
  • 8
    • 0030848624 scopus 로고    scopus 로고
    • A test case of correlation metric construction of a reaction pathway from measurements
    • Arkin, A., Shen, P., and Ross, J. (1997). A test case of correlation metric construction of a reaction pathway from measurements. Science 277, 1275-1279. doi:10.1126/science.277.5330.1275
    • (1997) Science , vol.277 , pp. 1275-1279
    • Arkin, A.1    Shen, P.2    Ross, J.3
  • 9
    • 80455140525 scopus 로고    scopus 로고
    • 'Metabolic pathway inference from time series data: a non iterative approach,'
    • eds M. Loog, L. Wessels, M. J. T. Reinders, and D. de Ridder (Berlin: Springer)
    • Astola, L., Groenenboom, M., Roldan, V. G., Van Eeuwijk, F., Hall, R. D., Bovy, A., et al. (2011). "Metabolic pathway inference from time series data: a non iterative approach," in Pattern Recognition in Bioinformatics, eds M. Loog, L. Wessels, M. J. T. Reinders, and D. de Ridder (Berlin: Springer), 97-108.
    • (2011) Pattern Recognition in Bioinformatics , pp. 97-108
    • Astola, L.1    Groenenboom, M.2    Roldan, V.G.3    Van Eeuwijk, F.4    Hall, R.D.5    Bovy, A.6
  • 10
    • 79951745936 scopus 로고    scopus 로고
    • Mass conservation and inference of metabolic networks from high-throughput mass spectrometry data
    • Bandaru, P., Bansal, M., and Nemenman, I. (2011). Mass conservation and inference of metabolic networks from high-throughput mass spectrometry data. J. Comput. Biol. 18, 147-154. doi:10.1089/cmb.2010.0222
    • (2011) J. Comput. Biol , vol.18 , pp. 147-154
    • Bandaru, P.1    Bansal, M.2    Nemenman, I.3
  • 11
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker, S. A., and Palsson, B. O. (2008). Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4:e1000082. doi:10.1371/journal.pcbi.1000082
    • (2008) PLoS Comput. Biol , vol.4
    • Becker, S.A.1    Palsson, B.O.2
  • 12
    • 68049100110 scopus 로고    scopus 로고
    • Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
    • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., and Rabinowitz, J. D. (2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593-599. doi:10.1038/nchembio.186
    • (2009) Nat. Chem. Biol , vol.5 , pp. 593-599
    • Bennett, B.D.1    Kimball, E.H.2    Gao, M.3    Osterhout, R.4    Van Dien, S.J.5    Rabinowitz, J.D.6
  • 13
    • 84866487453 scopus 로고    scopus 로고
    • Integration of expression data in genome-scale metabolic network reconstructions
    • Blazier, A. S., and Papin, J. A. (2012). Integration of expression data in genome-scale metabolic network reconstructions. Front. Physiol. 3:299. doi:10.3389/fphys.2012.00299
    • (2012) Front. Physiol , vol.3 , pp. 299
    • Blazier, A.S.1    Papin, J.A.2
  • 14
    • 84863331725 scopus 로고    scopus 로고
    • Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation
    • Bordbar, A., Mo, M. L., Nakayasu, E. S., Schrimpe-Rutledge, A. C., Kim, Y.-M., Metz, T. O., et al. (2012). Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol. 8, 558. doi:10.1038/msb.2012.21
    • (2012) Mol. Syst. Biol , vol.8 , pp. 558
    • Bordbar, A.1    Mo, M.L.2    Nakayasu, E.S.3    Schrimpe-Rutledge, A.C.4    Kim, Y.-M.5    Metz, T.O.6
  • 15
    • 33846017352 scopus 로고    scopus 로고
    • The nature of systems biology
    • Bruggeman, F. J., and Westerhoff, H. V. (2007). The nature of systems biology. Trends Microbiol. 15, 45-50. doi:10.1016/j.tim.2006.11.003
    • (2007) Trends Microbiol , vol.15 , pp. 45-50
    • Bruggeman, F.J.1    Westerhoff, H.V.2
  • 16
    • 34247256814 scopus 로고    scopus 로고
    • Flux balance analysis of a genome-scale yeast model constrained by exometabolomic data allows metabolic system identification of genetically different strains
    • Çakir, T., Efe, ç, Dikicioglu, D., Hortaçsu, A., Kirdar, B., and Oliver, S. G. (2007). Flux balance analysis of a genome-scale yeast model constrained by exometabolomic data allows metabolic system identification of genetically different strains. Biotechnol. Prog 23, 320-326. doi:10.1021/bp060272r
    • (2007) Biotechnol. Prog , vol.23 , pp. 320-326
    • Çakir, T.1    Efe, Ç.2    Dikicioglu, D.3    Hortaçsu, A.4    Kirdar, B.5    Oliver, S.G.6
  • 17
    • 70249151450 scopus 로고    scopus 로고
    • Metabolic network discovery through reverse engineering of metabolome data
    • Çakir, T., Hendriks, M. M., Westerhuis, J. A., and Smilde, A. K. (2009). Metabolic network discovery through reverse engineering of metabolome data. Metabolomics 5, 318-329. doi:10.1007/s11306-009-0156-4
    • (2009) Metabolomics , vol.5 , pp. 318-329
    • Çakir, T.1    Hendriks, M.M.2    Westerhuis, J.A.3    Smilde, A.K.4
  • 18
    • 20344365760 scopus 로고    scopus 로고
    • The origin of correlations in metabolomics data
    • Camacho, D., de la Fuente, A., and Mendes, P. (2005). The origin of correlations in metabolomics data. Metabolomics 1, 53-63. doi:10.1007/s11306-005-1107-3
    • (2005) Metabolomics , vol.1 , pp. 53-63
    • Camacho, D.1    de la Fuente, A.2    Mendes, P.3
  • 19
    • 84891774001 scopus 로고    scopus 로고
    • The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases
    • Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., et al. (2014). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42, D459-D471. doi:10.1093/nar/gkt1103
    • (2014) Nucleic Acids Res , vol.42 , pp. D459-D471
    • Caspi, R.1    Altman, T.2    Billington, R.3    Dreher, K.4    Foerster, H.5    Fulcher, C.A.6
  • 20
    • 84883800631 scopus 로고    scopus 로고
    • Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints
    • Chakrabarti, A., Miskovic, L., Soh, K. C., and Hatzimanikatis, V. (2013). Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J. 8, 1043-1057. doi:10.1002/biot.201300091
    • (2013) Biotechnol. J , vol.8 , pp. 1043-1057
    • Chakrabarti, A.1    Miskovic, L.2    Soh, K.C.3    Hatzimanikatis, V.4
  • 22
    • 33745616528 scopus 로고    scopus 로고
    • Identification of biochemical networks by S-tree based genetic programming
    • Cho, D.-Y., Cho, K.-H., and Zhang, B.-T. (2006). Identification of biochemical networks by S-tree based genetic programming. Bioinformatics 22, 1631-1640. doi:10.1093/bioinformatics/btl122
    • (2006) Bioinformatics , vol.22 , pp. 1631-1640
    • Cho, D.-Y.1    Cho, K.-H.2    Zhang, B.-T.3
  • 23
    • 65649102679 scopus 로고    scopus 로고
    • Recent developments in parameter estimation and structure identification of biochemical and genomic systems
    • Chou, I.-C., and Voit, E. O. (2009). Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosci. 219, 57-83. doi:10.1016/j.mbs.2009.03.002
    • (2009) Math. Biosci , vol.219 , pp. 57-83
    • Chou, I.-C.1    Voit, E.O.2
  • 24
    • 84889643157 scopus 로고    scopus 로고
    • Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis
    • Chubukov, V., Uhr, M., Le Chat, L., Kleijn, R. J., Jules, M., Link, H., et al. (2013). Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol. Syst. Biol. 9, 709. doi:10.1038/msb.2013.66
    • (2013) Mol. Syst. Biol , vol.9 , pp. 709
    • Chubukov, V.1    Uhr, M.2    Le Chat, L.3    Kleijn, R.J.4    Jules, M.5    Link, H.6
  • 25
    • 3142617691 scopus 로고    scopus 로고
    • Mathematical and computational techniques to deduce complex biochemical reaction mechanisms
    • Crampin, E. J., Schnell, S., and McSharry, P. E. (2004). Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog. Biophys. Mol. Biol. 86, 77-112. doi:10.1016/j.pbiomolbio.2004.04.002
    • (2004) Prog. Biophys. Mol. Biol , vol.86 , pp. 77-112
    • Crampin, E.J.1    Schnell, S.2    McSharry, P.E.3
  • 27
    • 35648972123 scopus 로고    scopus 로고
    • The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels
    • Daran-Lapujade, P., Rossell, S., van Gulik, W. M., Luttik, M. A. H., de Groot, M. J. L., Slijper, M., et al. (2007). The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc. Natl. Acad. Sci. U.S.A. 104, 15753-15758. doi:10.1073/pnas.0707476104
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 15753-15758
    • Daran-Lapujade, P.1    Rossell, S.2    van Gulik, W.M.3    Luttik, M.A.H.4    de Groot, M.J.L.5    Slijper, M.6
  • 28
    • 19644391133 scopus 로고    scopus 로고
    • Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations
    • Devantier, R., Scheithauer, B., Villas-Bôas, S. G., Pedersen, S., and Olsson, L. (2005). Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol. Bioeng. 90, 703-714. doi:10.1002/bit.20457
    • (2005) Biotechnol. Bioeng , vol.90 , pp. 703-714
    • Devantier, R.1    Scheithauer, B.2    Villas-Bôas, S.G.3    Pedersen, S.4    Olsson, L.5
  • 29
    • 85051912223 scopus 로고    scopus 로고
    • Computational reconstruction of metabolic networks from high-throughput profiling data
    • Diêp, N. Q., Hoan, P. T., Bao, H. T., Hùng, T. D., and Th'ăng, P. Q. (2011). Computational reconstruction of metabolic networks from high-throughput profiling data. J. Comput. Sci. Cybern 27, 23-35. doi:10.15625/1813-9663/27/1/460
    • (2011) J. Comput. Sci. Cybern , vol.27 , pp. 23-35
    • Diêp, N.Q.1    Hoan, P.T.2    Bao, H.T.3    Hùng, T.D.4    Th'ăng, P.Q.5
  • 30
    • 18844406001 scopus 로고    scopus 로고
    • Measuring the metabolome: current analytical technologies
    • Dunn, W. B., Bailey, N. J., and Johnson, H. E. (2005). Measuring the metabolome: current analytical technologies. Analyst 130, 606-625. doi:10.1039/b418288j
    • (2005) Analyst , vol.130 , pp. 606-625
    • Dunn, W.B.1    Bailey, N.J.2    Johnson, H.E.3
  • 31
    • 77952886804 scopus 로고    scopus 로고
    • The biomass objective function
    • Feist, A. M., and Palsson, B. O. (2010). The biomass objective function. Curr. Opin. Microbiol. 13, 344-349. doi:10.1016/j.mib.2010.03.003
    • (2010) Curr. Opin. Microbiol , vol.13 , pp. 344-349
    • Feist, A.M.1    Palsson, B.O.2
  • 32
    • 84874568936 scopus 로고    scopus 로고
    • Reverse engineering of biochemical reaction networks using co-evolution with eng-genes
    • Gormley, P., Li, K., Wolkenhauer, O., Irwin, G. W., and Du, D. (2013). Reverse engineering of biochemical reaction networks using co-evolution with eng-genes. Cogn. Comput. 5, 106-118. doi:10.1007/s12559-012-9159-y
    • (2013) Cogn. Comput , vol.5 , pp. 106-118
    • Gormley, P.1    Li, K.2    Wolkenhauer, O.3    Irwin, G.W.4    Du, D.5
  • 33
    • 84880341305 scopus 로고    scopus 로고
    • Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models
    • Hamilton, J. J., Dwivedi, V., and Reed, J. L. (2013). Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models. Biophys. J. 105, 512-522. doi:10.1016/j.bpj.2013.06.011
    • (2013) Biophys. J , vol.105 , pp. 512-522
    • Hamilton, J.J.1    Dwivedi, V.2    Reed, J.L.3
  • 35
    • 33645752331 scopus 로고    scopus 로고
    • Genome-scale thermodynamic analysis of Escherichia coli metabolism
    • Henry, C. S., Jankowski, M. D., Broadbelt, L. J., and Hatzimanikatis, V. (2006). Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys. J. 90, 1453-1461. doi:10.1529/biophysj.105.071720
    • (2006) Biophys. J , vol.90 , pp. 1453-1461
    • Henry, C.S.1    Jankowski, M.D.2    Broadbelt, L.J.3    Hatzimanikatis, V.4
  • 36
    • 84895963679 scopus 로고    scopus 로고
    • What mRNA abundances can tell us about metabolism
    • Hoppe, A. (2012). What mRNA abundances can tell us about metabolism. Metabolites 2, 614-631. doi:10.3390/metabo2030614
    • (2012) Metabolites , vol.2 , pp. 614-631
    • Hoppe, A.1
  • 37
    • 36248990302 scopus 로고    scopus 로고
    • Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
    • Hoppe, A., Hoffmann, S., and Holzhütter, H.-G. (2007). Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst. Biol. 1:23. doi:10.1186/1752-0509-1-23
    • (2007) BMC Syst. Biol , vol.1 , pp. 23
    • Hoppe, A.1    Hoffmann, S.2    Holzhütter, H.-G.3
  • 38
    • 79951536020 scopus 로고    scopus 로고
    • Functional integration of a metabolic network model and expression data without arbitrary thresholding
    • Jensen, P. A., and Papin, J. A. (2011). Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27, 541-547. doi:10.1093/bioinformatics/btq702
    • (2011) Bioinformatics , vol.27 , pp. 541-547
    • Jensen, P.A.1    Papin, J.A.2
  • 39
    • 84891760956 scopus 로고    scopus 로고
    • Data, information, knowledge and principle: back to metabolism in KEGG
    • Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2014). Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199-D205. doi:10.1093/nar/gkt1076
    • (2014) Nucleic Acids Res , vol.42 , pp. D199-D205
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Kawashima, M.4    Furumichi, M.5    Tanabe, M.6
  • 40
    • 2942676743 scopus 로고    scopus 로고
    • Metabolomics and systems biology: making sense of the soup
    • Kell, D. B. (2004). Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296-307. doi:10.1016/j.mib.2004.04.012
    • (2004) Curr. Opin. Microbiol , vol.7 , pp. 296-307
    • Kell, D.B.1
  • 41
    • 84866354583 scopus 로고    scopus 로고
    • Ensemble modeling of cancer metabolism
    • Khazaei, T., McGuigan, A., and Mahadevan, R. (2012). Ensemble modeling of cancer metabolism. Front. Physiol. 3:135. doi:10.3389/fphys.2012.00135
    • (2012) Front. Physiol , vol.3 , pp. 135
    • Khazaei, T.1    McGuigan, A.2    Mahadevan, R.3
  • 42
    • 84904317199 scopus 로고    scopus 로고
    • A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data
    • Khodayari, A., Zomorrodi, A. R., Liao, J. C., and Maranas, C. D. (2014). A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab. Eng. 25, 50-62. doi:10.1016/j.ymben.2014.05.014
    • (2014) Metab. Eng , vol.25 , pp. 50-62
    • Khodayari, A.1    Zomorrodi, A.R.2    Liao, J.C.3    Maranas, C.D.4
  • 43
    • 84864795465 scopus 로고    scopus 로고
    • Recent advances in reconstruction and applications of genome-scale metabolic models
    • Kim, T. Y., Sohn, S. B., Kim, Y. B., Kim, W. J., and Lee, S. Y. (2012). Recent advances in reconstruction and applications of genome-scale metabolic models. Curr. Opin. Biotechnol. 23, 617-623. doi:10.1016/j.copbio.2011.10.007
    • (2012) Curr. Opin. Biotechnol , vol.23 , pp. 617-623
    • Kim, T.Y.1    Sohn, S.B.2    Kim, Y.B.3    Kim, W.J.4    Lee, S.Y.5
  • 44
    • 79251567361 scopus 로고    scopus 로고
    • Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data
    • Krumsiek, J., Suhre, K., Illig, T., Adamski, J., and Theis, F. J. (2011). Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst. Biol. 5:21. doi:10.1186/1752-0509-5-21
    • (2011) BMC Syst. Biol , vol.5 , pp. 21
    • Krumsiek, J.1    Suhre, K.2    Illig, T.3    Adamski, J.4    Theis, F.J.5
  • 45
    • 84899996678 scopus 로고    scopus 로고
    • Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions
    • Kügler, P., and Yang, W. (2014). Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions. J. Math. Biol. 68, 1757-1783. doi:10.1007/s00285-013-0685-3
    • (2014) J. Math. Biol , vol.68 , pp. 1757-1783
    • Kügler, P.1    Yang, W.2
  • 46
    • 84855499408 scopus 로고    scopus 로고
    • MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases
    • Kumar, A., Suthers, P. F., and Maranas, C. D. (2012). MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics 13:6. doi:10.1186/1471-2105-13-6
    • (2012) BMC Bioinformatics , vol.13 , pp. 6
    • Kumar, A.1    Suthers, P.F.2    Maranas, C.D.3
  • 47
    • 84861436119 scopus 로고    scopus 로고
    • Inferring biochemical reaction pathways: the case of the gemcitabine pharmacokinetics
    • Lecca, P., Morpurgo, D., Fantaccini, G., Casagrande, A., and Priami, C. (2012). Inferring biochemical reaction pathways: the case of the gemcitabine pharmacokinetics. BMC Syst. Biol. 6:51. doi:10.1186/1752-0509-6-51
    • (2012) BMC Syst. Biol , vol.6 , pp. 51
    • Lecca, P.1    Morpurgo, D.2    Fantaccini, G.3    Casagrande, A.4    Priami, C.5
  • 48
    • 84874715571 scopus 로고    scopus 로고
    • Biological network inference for drug discovery
    • Lecca, P., and Priami, C. (2013). Biological network inference for drug discovery. Drug Discov. Today 18, 256-264. doi:10.1016/j.drudis.2012.11.001
    • (2013) Drug Discov. Today , vol.18 , pp. 256-264
    • Lecca, P.1    Priami, C.2
  • 49
    • 84862301363 scopus 로고    scopus 로고
    • Improving metabolic flux predictions using absolute gene expression data
    • Lee, D., Smallbone, K., Dunn, W. B., Murabito, E., Winder, C. L., Kell, D. B., et al. (2012). Improving metabolic flux predictions using absolute gene expression data. BMC Syst. Biol. 6:73. doi:10.1186/1752-0509-6-73
    • (2012) BMC Syst. Biol , vol.6 , pp. 73
    • Lee, D.1    Smallbone, K.2    Dunn, W.B.3    Murabito, E.4    Winder, C.L.5    Kell, D.B.6
  • 50
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
    • Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpitiya, A. D., et al. (2010). Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390. doi:10.1038/msb.2010.47
    • (2010) Mol. Syst. Biol , vol.6 , pp. 390
    • Lewis, N.E.1    Hixson, K.K.2    Conrad, T.M.3    Lerman, J.A.4    Charusanti, P.5    Polpitiya, A.D.6
  • 51
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • Lewis, N. E., Nagarajan, H., and Palsson, B. O. (2012). Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291-305. doi:10.1038/nrmicro2737
    • (2012) Nat. Rev. Microbiol , vol.10 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 52
    • 84894054579 scopus 로고    scopus 로고
    • Advancing metabolic models with kinetic information
    • Link, H., Christodoulou, D., and Sauer, U. (2014). Advancing metabolic models with kinetic information. Curr. Opin. Biotechnol. 29, 8-14. doi:10.1016/j.copbio.2014.01.015
    • (2014) Curr. Opin. Biotechnol , vol.29 , pp. 8-14
    • Link, H.1    Christodoulou, D.2    Sauer, U.3
  • 53
    • 41949109225 scopus 로고    scopus 로고
    • Inference of biochemical network models in S-system using multiobjective optimization approach
    • Liu, P.-K., and Wang, F.-S. (2008). Inference of biochemical network models in S-system using multiobjective optimization approach. Bioinformatics 24, 1085-1092. doi:10.1093/bioinformatics/btn075
    • (2008) Bioinformatics , vol.24 , pp. 1085-1092
    • Liu, P.-K.1    Wang, F.-S.2
  • 54
    • 85135545222 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado, D., and Herrgård, M. (2014). Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10:e1003989. doi:10.1371/journal.pcbi.1003989
    • (2014) PLoS Comput. Biol , vol.10
    • Machado, D.1    Herrgård, M.2
  • 55
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan, R., and Schilling, C. H. (2003). The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264-276. doi:10.1016/j.ymben.2003.09.002
    • (2003) Metab. Eng , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.H.2
  • 56
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al. (2006). ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl. 1):S7. doi:10.1186/1471-2105-7-S1-S7
    • (2006) BMC Bioinformatics , vol.7 , pp. S7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Dalla Favera, R.6
  • 57
    • 84907292694 scopus 로고    scopus 로고
    • Sampling of intracellular metabolites for stationary and non-stationary (13)C metabolic flux analysis in Escherichia coli
    • Millard, P., Massou, S., Wittmann, C., Portais, J.-C., and Létisse, F. (2014). Sampling of intracellular metabolites for stationary and non-stationary (13)C metabolic flux analysis in Escherichia coli. Anal. Biochem. 465C, 38-49. doi:10.1016/j.ab.2014.07.026
    • (2014) Anal. Biochem , vol.465C , pp. 38-49
    • Millard, P.1    Massou, S.2    Wittmann, C.3    Portais, J.-C.4    Létisse, F.5
  • 58
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo, M. L., Palsson, B. O., and Herrgård, M. J. (2009). Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3:37. doi:10.1186/1752-0509-3-37
    • (2009) BMC Syst. Biol , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.O.2    Herrgård, M.J.3
  • 59
    • 80855156746 scopus 로고    scopus 로고
    • A graphical user interface for a method to infer kinetics and network architecture (MIKANA)
    • Mourão, M. A., Srividhya, J., McSharry, P. E., Crampin, E. J., and Schnell, S. (2011). A graphical user interface for a method to infer kinetics and network architecture (MIKANA). PLoS ONE 6:e27534. doi:10.1371/journal.pone.0027534
    • (2011) PLoS ONE , vol.6
    • Mourão, M.A.1    Srividhya, J.2    McSharry, P.E.3    Crampin, E.J.4    Schnell, S.5
  • 60
    • 84872270542 scopus 로고    scopus 로고
    • Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures
    • Mueller, D., and Heinzle, E. (2013). Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures. Curr. Opin. Biotechnol. 24, 54-59. doi:10.1016/j.copbio.2012.10.015
    • (2013) Curr. Opin. Biotechnol , vol.24 , pp. 54-59
    • Mueller, D.1    Heinzle, E.2
  • 61
    • 84875625255 scopus 로고    scopus 로고
    • Fast thermodynamically constrained flux variability analysis
    • Müller, A., and Bockmayr, A. (2013). Fast thermodynamically constrained flux variability analysis. Bioinformatics 29, 903-909. doi:10.1093/bioinformatics/btt059
    • (2013) Bioinformatics , vol.29 , pp. 903-909
    • Müller, A.1    Bockmayr, A.2
  • 62
    • 84898806978 scopus 로고    scopus 로고
    • Solving the differential biochemical Jacobian from metabolomics covariance data
    • Nägele, T., Mair, A., Sun, X., Fragner, L., Teige, M., and Weckwerth, W. (2014). Solving the differential biochemical Jacobian from metabolomics covariance data. PLoS ONE 9:e92299. doi:10.1371/journal.pone.0092299
    • (2014) PLoS ONE , vol.9
    • Nägele, T.1    Mair, A.2    Sun, X.3    Fragner, L.4    Teige, M.5    Weckwerth, W.6
  • 63
    • 84870398009 scopus 로고    scopus 로고
    • Genome-level transcription data of Yersinia pestis analyzed with a new metabolic constraint-based approach
    • Navid, A., and Almaas, E. (2012). Genome-level transcription data of Yersinia pestis analyzed with a new metabolic constraint-based approach. BMC Syst. Biol. 6:150. doi:10.1186/1752-0509-6-150
    • (2012) BMC Syst. Biol , vol.6 , pp. 150
    • Navid, A.1    Almaas, E.2
  • 64
    • 36248940715 scopus 로고    scopus 로고
    • Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism
    • Nemenman, I., Escola, G. S., Hlavacek, W. S., Unkefer, P. J., Unkefer, C. J., and Wall, M. E. (2007). Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism. Ann. N. Y. Acad. Sci. 1115, 102-115. doi:10.1196/annals.1407.013
    • (2007) Ann. N. Y. Acad. Sci , vol.1115 , pp. 102-115
    • Nemenman, I.1    Escola, G.S.2    Hlavacek, W.S.3    Unkefer, P.J.4    Unkefer, C.J.5    Wall, M.E.6
  • 65
    • 84863617813 scopus 로고    scopus 로고
    • Understanding regulation of metabolism through feasibility analysis
    • Nikerel, E., Berkhout, J., Hu, F., Teusink, B., Reinders, M. J. T., and de Ridder, D. (2012). Understanding regulation of metabolism through feasibility analysis. PLoS ONE 7:e39396. doi:10.1371/journal.pone.0039396
    • (2012) PLoS ONE , vol.7
    • Nikerel, E.1    Berkhout, J.2    Hu, F.3    Teusink, B.4    Reinders, M.J.T.5    de Ridder, D.6
  • 66
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • Oberhardt, M. A., Palsson, B. Ø., and Papin, J. A. (2009). Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320. doi:10.1038/msb.2009.77
    • (2009) Mol. Syst. Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.Ø.2    Papin, J.A.3
  • 67
    • 84896721750 scopus 로고    scopus 로고
    • Sparsity as cellular objective to infer directed metabolic networks from steady-state metabolome data: a theoretical analysis
    • Öksüz, M., Sadikoglu, H., and Çakir, T. (2013). Sparsity as cellular objective to infer directed metabolic networks from steady-state metabolome data: a theoretical analysis. PLoS ONE 8:e84505. doi:10.1371/journal.pone.0084505
    • (2013) PLoS ONE , vol.8
    • Öksüz, M.1    Sadikoglu, H.2    Çakir, T.3
  • 68
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat. Biotechnol. 28, 245-248. doi:10.1038/nbt.1614
    • (2010) Nat. Biotechnol , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.Ø.3
  • 69
    • 53949122260 scopus 로고    scopus 로고
    • Can yeast systems biology contribute to the understanding of human disease?
    • Petranovic, D., and Nielsen, J. (2008). Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol. 26, 584-590. doi:10.1016/j.tibtech.2008.07.008
    • (2008) Trends Biotechnol , vol.26 , pp. 584-590
    • Petranovic, D.1    Nielsen, J.2
  • 70
    • 53049109225 scopus 로고    scopus 로고
    • Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation
    • Postmus, J., Canelas, A. B., Bouwman, J., Bakker, B. M., van Gulik, W., de Mattos, M. J. T., et al. (2008). Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation. J. Biol. Chem. 283, 23524-23532. doi:10.1074/jbc.M802908200
    • (2008) J. Biol. Chem , vol.283 , pp. 23524-23532
    • Postmus, J.1    Canelas, A.B.2    Bouwman, J.3    Bakker, B.M.4    van Gulik, W.5    de Mattos, M.J.T.6
  • 73
    • 0041744850 scopus 로고    scopus 로고
    • On the deduction of chemical reaction pathways from measurements of time series of concentrations
    • Samoilov, M., Arkin, A., and Ross, J. (2001). On the deduction of chemical reaction pathways from measurements of time series of concentrations. Chaos 11, 108-114. doi:10.1063/1.1336499
    • (2001) Chaos , vol.11 , pp. 108-114
    • Samoilov, M.1    Arkin, A.2    Ross, J.3
  • 74
    • 33846061120 scopus 로고    scopus 로고
    • 13C-based flux analysis
    • 13C-based flux analysis. Mol. Syst. Biol. 2, 62. doi:10.1038/msb4100109
    • (2006) Mol. Syst. Biol , vol.2 , pp. 62
    • Sauer, U.1
  • 75
    • 0342349799 scopus 로고
    • Recasting nonlinear differential equations as S-systems: a canonical nonlinear form
    • Savageau, M. A., and Voit, E. O. (1987). Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math. Biosci. 87, 83-115. doi:10.1016/0025-5564(87)90035-6
    • (1987) Math. Biosci , vol.87 , pp. 83-115
    • Savageau, M.A.1    Voit, E.O.2
  • 77
    • 18444388867 scopus 로고    scopus 로고
    • Identification of small scale biochemical networks based on general type system perturbations
    • Schmidt, H., Cho, K.-H., and Jacobsen, E. W. (2005). Identification of small scale biochemical networks based on general type system perturbations. FEBS J. 272, 2141-2151. doi:10.1111/j.1742-4658.2005.04605.x
    • (2005) FEBS J , vol.272 , pp. 2141-2151
    • Schmidt, H.1    Cho, K.-H.2    Jacobsen, E.W.3
  • 78
    • 80052672907 scopus 로고    scopus 로고
    • Automated refinement and inference of analytical models for metabolic networks
    • Schmidt, M. D., Vallabhajosyula, R. R., Jenkins, J. W., Hood, J. E., Soni, A. S., Wikswo, J. P., et al. (2011). Automated refinement and inference of analytical models for metabolic networks. Phys. Biol. 8, 055011. doi:10.1088/1478-3975/8/5/055011
    • (2011) Phys. Biol , vol.8
    • Schmidt, M.D.1    Vallabhajosyula, R.R.2    Jenkins, J.W.3    Hood, J.E.4    Soni, A.S.5    Wikswo, J.P.6
  • 79
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
    • Schuetz, R., Kuepfer, L., and Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119. doi:10.1038/msb4100162
    • (2007) Mol. Syst. Biol , vol.3 , pp. 119
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 80
    • 51349092391 scopus 로고    scopus 로고
    • Network-based prediction of human tissue-specific metabolism
    • Shlomi, T., Cabili, M. N., Herrgård, M. J., Palsson, B. Ø., and Ruppin, E. (2008). Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003-1010. doi:10.1038/nbt.1487
    • (2008) Nat. Biotechnol , vol.26 , pp. 1003-1010
    • Shlomi, T.1    Cabili, M.N.2    Herrgård, M.J.3    Palsson, B.Ø.4    Ruppin, E.5
  • 81
    • 77649176477 scopus 로고    scopus 로고
    • Towards a genome-scale kinetic model of cellular metabolism
    • Smallbone, K., Simeonidis, E., Swainston, N., and Mendes, P. (2010). Towards a genome-scale kinetic model of cellular metabolism. BMC Syst. Biol. 4:6. doi:10.1186/1752-0509-4-6
    • (2010) BMC Syst. Biol , vol.4 , pp. 6
    • Smallbone, K.1    Simeonidis, E.2    Swainston, N.3    Mendes, P.4
  • 82
    • 77952952952 scopus 로고    scopus 로고
    • Network thermodynamics in the post-genomic era
    • Soh, K. C., and Hatzimanikatis, V. (2010). Network thermodynamics in the post-genomic era. Curr. Opin. Microbiol. 13, 350-357. doi:10.1016/j.mib.2010.03.001
    • (2010) Curr. Opin. Microbiol , vol.13 , pp. 350-357
    • Soh, K.C.1    Hatzimanikatis, V.2
  • 83
    • 34547607606 scopus 로고    scopus 로고
    • Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations
    • Sorribas, A., Hernández-Bermejo, B., Vilaprinyo, E., and Alves, R. (2007). Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol. Bioeng. 97, 1259-1277. doi:10.1002/bit.21316
    • (2007) Biotechnol. Bioeng , vol.97 , pp. 1259-1277
    • Sorribas, A.1    Hernández-Bermejo, B.2    Vilaprinyo, E.3    Alves, R.4
  • 84
    • 33947732288 scopus 로고    scopus 로고
    • Reconstructing biochemical pathways from time course data
    • Srividhya, J., Crampin, E. J., McSharry, P. E., and Schnell, S. (2007). Reconstructing biochemical pathways from time course data. Proteomics 7, 828-838. doi:10.1002/pmic.200600428
    • (2007) Proteomics , vol.7 , pp. 828-838
    • Srividhya, J.1    Crampin, E.J.2    McSharry, P.E.3    Schnell, S.4
  • 85
    • 84893707475 scopus 로고    scopus 로고
    • Systematic construction of kinetic models from genome-scale metabolic networks
    • Stanford, N. J., Lubitz, T., Smallbone, K., Klipp, E., Mendes, P., and Liebermeister, W. (2013). Systematic construction of kinetic models from genome-scale metabolic networks. PLoS ONE 8:e79195. doi:10.1371/journal.pone.0079195
    • (2013) PLoS ONE , vol.8
    • Stanford, N.J.1    Lubitz, T.2    Smallbone, K.3    Klipp, E.4    Mendes, P.5    Liebermeister, W.6
  • 86
    • 33747061013 scopus 로고    scopus 로고
    • Structural kinetic modeling of metabolic networks
    • Steuer, R., Gross, T., Selbig, J., and Blasius, B. (2006). Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 103, 11868-11873. doi:10.1073/pnas.0600013103
    • (2006) Proc. Natl. Acad. Sci. U.S.A , vol.103 , pp. 11868-11873
    • Steuer, R.1    Gross, T.2    Selbig, J.3    Blasius, B.4
  • 87
    • 0038281453 scopus 로고    scopus 로고
    • Observing and interpreting correlations in metabolomic networks
    • Steuer, R., Kurths, J., Fiehn, O., and Weckwerth, W. (2003). Observing and interpreting correlations in metabolomic networks. Bioinformatics 19, 1019-1026. doi:10.1093/bioinformatics/btg120
    • (2003) Bioinformatics , vol.19 , pp. 1019-1026
    • Steuer, R.1    Kurths, J.2    Fiehn, O.3    Weckwerth, W.4
  • 88
    • 84862802794 scopus 로고    scopus 로고
    • COVAIN: a toolbox for uni-and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data
    • Sun, X., and Weckwerth, W. (2012). COVAIN: a toolbox for uni-and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 8, 81-93. doi:10.1007/s11306-012-0399-3
    • (2012) Metabolomics , vol.8 , pp. 81-93
    • Sun, X.1    Weckwerth, W.2
  • 89
    • 84905267868 scopus 로고    scopus 로고
    • The role of flexibility and optimality in the prediction of intracellular fluxes of microbial central carbon metabolism
    • Tarlak, F., Sadikoglu, H., and Çakir, T. (2014). The role of flexibility and optimality in the prediction of intracellular fluxes of microbial central carbon metabolism. Mol. Biosyst. 10, 2459-2465. doi:10.1039/c4mb00117f
    • (2014) Mol. Biosyst , vol.10 , pp. 2459-2465
    • Tarlak, F.1    Sadikoglu, H.2    Çakir, T.3
  • 91
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele, I., and Palsson, B. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93-121. doi:10.1038/nprot.2009.203
    • (2010) Nat. Protoc , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.2
  • 92
    • 0037452796 scopus 로고    scopus 로고
    • Experimental test of a method for determining causal connectivities of species in reactions
    • Torralba, A. S., Yu, K., Shen, P., Oefner, P. J., and Ross, J. (2003). Experimental test of a method for determining causal connectivities of species in reactions. Proc. Natl. Acad. Sci. U.S.A. 100, 1494-1498. doi:10.1073/pnas.262790699
    • (2003) Proc. Natl. Acad. Sci. U.S.A , vol.100 , pp. 1494-1498
    • Torralba, A.S.1    Yu, K.2    Shen, P.3    Oefner, P.J.4    Ross, J.5
  • 93
    • 34447276204 scopus 로고    scopus 로고
    • Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic flux analysis
    • Toya, Y., Ishii, N., Hirasawa, T., Naba, M., Hirai, K., Sugawara, K., et al. (2007). Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic flux analysis. J. Chromatogr. 1159, 134-141. doi:10.1016/j.chroma.2007.04.011
    • (2007) J. Chromatogr , vol.1159 , pp. 134-141
    • Toya, Y.1    Ishii, N.2    Hirasawa, T.3    Naba, M.4    Hirai, K.5    Sugawara, K.6
  • 94
    • 58749106454 scopus 로고    scopus 로고
    • Ensemble modeling of metabolic networks
    • Tran, L. M., Rizk, M. L., and Liao, J. C. (2008). Ensemble modeling of metabolic networks. Biophys. J. 95, 5606-5617. doi:10.1529/biophysj.108.135442
    • (2008) Biophys. J , vol.95 , pp. 5606-5617
    • Tran, L.M.1    Rizk, M.L.2    Liao, J.C.3
  • 96
    • 15044347498 scopus 로고    scopus 로고
    • Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of (13)C-labeled primary metabolites
    • Van Winden, W. A., van Dam, J. C., Ras, C., Kleijn, R. J., Vinke, J. L., van Gulik, W. M., et al. (2005). Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of (13)C-labeled primary metabolites. FEMS Yeast Res. 5, 559-568. doi:10.1016/j.femsyr.2004.10.007
    • (2005) FEMS Yeast Res , vol.5 , pp. 559-568
    • Van Winden, W.A.1    van Dam, J.C.2    Ras, C.3    Kleijn, R.J.4    Vinke, J.L.5    van Gulik, W.M.6
  • 97
    • 0037197832 scopus 로고    scopus 로고
    • Determination of causal connectivities of species in reaction networks
    • Vance, W., Arkin, A., and Ross, J. (2002). Determination of causal connectivities of species in reaction networks. Proc. Natl. Acad. Sci. U.S.A. 99, 5816-5821. doi:10.1073/pnas.022049699
    • (2002) Proc. Natl. Acad. Sci. U.S.A , vol.99 , pp. 5816-5821
    • Vance, W.1    Arkin, A.2    Ross, J.3
  • 98
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110: basic concepts, scientific and practical use
    • Varma, A., and Palsson, B. (1994). Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110: basic concepts, scientific and practical use. Appl. Environ. Microbiol. 60, 3724-3731.
    • (1994) Appl. Environ. Microbiol , vol.60 , pp. 3724-3731
    • Varma, A.1    Palsson, B.2
  • 99
    • 84900566215 scopus 로고    scopus 로고
    • MIDER: network inference with mutual information distance and entropy reduction
    • Villaverde, A. F., Ross, J., Morán, F., and Banga, J. R. (2014). MIDER: network inference with mutual information distance and entropy reduction. PLoS ONE 9:e96732. doi:10.1371/journal.pone.0096732
    • (2014) PLoS ONE , vol.9
    • Villaverde, A.F.1    Ross, J.2    Morán, F.3    Banga, J.R.4
  • 100
    • 6044260198 scopus 로고    scopus 로고
    • Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics
    • Visser, D., Schmid, J. W., Mauch, K., Reuss, M., and Heijnen, J. J. (2004). Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metab. Eng. 6, 378-390. doi:10.1016/j.ymben.2004.07.001
    • (2004) Metab. Eng , vol.6 , pp. 378-390
    • Visser, D.1    Schmid, J.W.2    Mauch, K.3    Reuss, M.4    Heijnen, J.J.5
  • 101
    • 2442647715 scopus 로고    scopus 로고
    • Differential metabolic networks unravel the effects of silent plant phenotypes
    • Weckwerth, W., Loureiro, M. E., Wenzel, K., and Fiehn, O. (2004). Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. U.S.A. 101, 7809-7814. doi:10.1073/pnas.0303415101
    • (2004) Proc. Natl. Acad. Sci. U.S.A , vol.101 , pp. 7809-7814
    • Weckwerth, W.1    Loureiro, M.E.2    Wenzel, K.3    Fiehn, O.4
  • 104
    • 84887626505 scopus 로고    scopus 로고
    • Isotopically non-stationary metabolic flux analysis: complex yet highly informative
    • Wiechert, W., and Nöh, K. (2013). Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr. Opin. Biotechnol. 24, 979-986. doi:10.1016/j.copbio.2013.03.024
    • (2013) Curr. Opin. Biotechnol , vol.24 , pp. 979-986
    • Wiechert, W.1    Nöh, K.2
  • 105
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • Yizhak, K., Benyamini, T., Liebermeister, W., Ruppin, E., and Shlomi, T. (2010). Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 26, i255-i260. doi:10.1093/bioinformatics/btq183
    • (2010) Bioinformatics , vol.26 , pp. i255-i260
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 106
    • 38449111120 scopus 로고    scopus 로고
    • An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis
    • Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H., and Stephanopoulos, G. (2008). An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol. Bioeng. 99, 686-699. doi:10.1002/bit.21632
    • (2008) Biotechnol. Bioeng , vol.99 , pp. 686-699
    • Young, J.D.1    Walther, J.L.2    Antoniewicz, M.R.3    Yoo, H.4    Stephanopoulos, G.5
  • 107
    • 66749182798 scopus 로고    scopus 로고
    • (13)C-based metabolic flux analysis
    • Zamboni, N., Fendt, S.-M., Rühl, M., and Sauer, U. (2009). (13)C-based metabolic flux analysis. Nat. Protoc. 4, 878-892. doi:10.1038/nprot.2009.58
    • (2009) Nat. Protoc , vol.4 , pp. 878-892
    • Zamboni, N.1    Fendt, S.-M.2    Rühl, M.3    Sauer, U.4
  • 109
    • 84901321053 scopus 로고    scopus 로고
    • Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes
    • Zelezniak, A., Sheridan, S., and Patil, K. R. (2014). Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes. PLoS Comput. Biol. 10:e1003572. doi:10.1371/journal.pcbi.1003572
    • (2014) PLoS Comput. Biol , vol.10
    • Zelezniak, A.1    Sheridan, S.2    Patil, K.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.