메뉴 건너뛰기




Volumn 5, Issue 1, 2013, Pages 106-118

Reverse Engineering of Biochemical Reaction Networks Using Co-evolution with Eng-Genes

Author keywords

Evolutionary programming; Modelling; Parameter estimation; Reverse engineering; Symbolic identification; System identification

Indexed keywords

BIOCHEMICAL REACTION NETWORK; CANDIDATE MODELS; CO-EVOLUTION; CO-EVOLUTIONARY ALGORITHM; CONVENTIONAL METHODS; DIFFERENTIAL EQUATION MODEL; ENG-GENES; MOLECULAR SPECIES; PARTITIONING METHODS; PLAUSIBLE MODEL; PRIORI KNOWLEDGE; REACTION NETWORK; REVERSE ENGINEERING PROCESS; REVERSE ENGINEERS; SMALL NETWORKS; SYSTEM EQUATIONS; TARGET SYSTEMS; TIME-SERIES DATA;

EID: 84874568936     PISSN: 18669956     EISSN: 18669964     Source Type: Journal    
DOI: 10.1007/s12559-012-9159-y     Document Type: Article
Times cited : (4)

References (41)
  • 1
    • 0036749170 scopus 로고    scopus 로고
    • Evolutionary modeling and inference of gene network
    • Ando S, Sakamoto E, Iba H. Evolutionary modeling and inference of gene network. Inf Sci. 2002; 145: 237-59.
    • (2002) Inf Sci , vol.145 , pp. 237-259
    • Ando, S.1    Sakamoto, E.2    Iba, H.3
  • 2
    • 9644284380 scopus 로고    scopus 로고
    • Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy
    • Andrec M, Kholodenko BN, Levy RM, Sontag E. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J Theor Biol. 2005; 232: 427-41.
    • (2005) J Theor Biol , vol.232 , pp. 427-441
    • Andrec, M.1    Kholodenko, B.N.2    Levy, R.M.3    Sontag, E.4
  • 3
    • 0037074955 scopus 로고    scopus 로고
    • Antagonistic coevolution between the sexes in a group of insects
    • Arnqvist G, Rowe L. Antagonistic coevolution between the sexes in a group of insects. Nature. 2002; 415: 787-9.
    • (2002) Nature , vol.415 , pp. 787-789
    • Arnqvist, G.1    Rowe, L.2
  • 5
    • 24144463742 scopus 로고    scopus 로고
    • Nonlinear system identification using coevolution of models and tests
    • Bongard J, Lipson H. Nonlinear system identification using coevolution of models and tests. IEEE Trans Evol Comput. 2005; 9(4): 361-84.
    • (2005) IEEE Trans Evol Comput , vol.9 , Issue.4 , pp. 361-384
    • Bongard, J.1    Lipson, H.2
  • 6
    • 34547175927 scopus 로고    scopus 로고
    • Automated reverse engineering of nonlinear dynamical systems
    • Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proc Natl Acad Sci. 2007; 104: 9943-8.
    • (2007) Proc Natl Acad Sci , vol.104 , pp. 9943-9948
    • Bongard, J.1    Lipson, H.2
  • 7
    • 40849145571 scopus 로고    scopus 로고
    • Soft computing methods to predict gene regulatory networks: an integrative approach on time-series gene expression data
    • Chan ZSH, Havukkala I, Jain V, Hu Y, Kasabov N. Soft computing methods to predict gene regulatory networks: an integrative approach on time-series gene expression data. Appl Soft Comput. 2008; 8: 1189-99.
    • (2008) Appl Soft Comput , vol.8 , pp. 1189-1199
    • Chan, Z.S.H.1    Havukkala, I.2    Jain, V.3    Hu, Y.4    Kasabov, N.5
  • 8
    • 84862823570 scopus 로고    scopus 로고
    • Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
    • Chandra R, Zhang M. Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction. Neurocomputation. 2012; 86: 116-23.
    • (2012) Neurocomputation , vol.86 , pp. 116-123
    • Chandra, R.1    Zhang, M.2
  • 9
    • 33745616528 scopus 로고    scopus 로고
    • Identification of biochemical networks by s-tree based genetic programming
    • Cho DY, Cho KH, Zhang BT. Identification of biochemical networks by s-tree based genetic programming. Bioinformatics. 2006; 22: 1631-40.
    • (2006) Bioinformatics , vol.22 , pp. 1631-1640
    • Cho, D.Y.1    Cho, K.H.2    Zhang, B.T.3
  • 10
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: implications for exploring gene and protein expression data
    • Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer. 2008; 8(1): 37-49.
    • (2008) Nat Rev Cancer , vol.8 , Issue.1 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3    Xuan, J.4    Liu, M.C.5    Gehan, E.A.6    Wang, Y.7
  • 12
    • 56449089569 scopus 로고    scopus 로고
    • Integrated structure selection and parameter optimisation for eng-genes neural models
    • Connally P, Li K, Irwin GW. Integrated structure selection and parameter optimisation for eng-genes neural models. Neurocomputing. 2008; 71(13-15): 2964-77.
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 2964-2977
    • Connally, P.1    Li, K.2    Irwin, G.W.3
  • 14
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • Gardner TS, Faith JJ. (2005) Reverse-engineering transcription control networks. Phys Life Rev. 2(1): 65-88.
    • (2005) Phys Life Rev , vol.2 , Issue.1 , pp. 65-88
    • Gardner, T.S.1    Faith, J.J.2
  • 15
    • 41349095866 scopus 로고    scopus 로고
    • Modelling molecular interaction pathways using a two-stage identification algorithm
    • Gormley P, Li K, Irwin G. Modelling molecular interaction pathways using a two-stage identification algorithm. Syst Synth Biol. 2007; 1(3): 145-60.
    • (2008) Syst Synth Biol , vol.1 , Issue.3 , pp. 145-160
    • Gormley, P.1    Li, K.2    Irwin, G.3
  • 16
    • 27644508196 scopus 로고    scopus 로고
    • Constructing and analyzing a large-scale gene-to-gene regulatory network lasso-constrained inference and biological validation
    • Gustafsson M, Hornquist M, Lombardi A. Constructing and analyzing a large-scale gene-to-gene regulatory network lasso-constrained inference and biological validation. IEEE/ACM Trans Comput Biol Bioinform. 2005; 2(3): 254-61.
    • (2005) IEEE/ACM Trans Comput Biol Bioinform , vol.2 , Issue.3 , pp. 254-261
    • Gustafsson, M.1    Hornquist, M.2    Lombardi, A.3
  • 17
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: a brief overview
    • Kitano H. Systems biology: a brief overview. Science. 2002; 295: 1662-4.
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 18
    • 0037461033 scopus 로고    scopus 로고
    • Dynamic modeling of genetic networks using genetic algorithm and s-system
    • Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M. Dynamic modeling of genetic networks using genetic algorithm and s-system. Bioinformatics. 2003; 19(5): 643-50.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 643-650
    • Kikuchi, S.1    Tominaga, D.2    Arita, M.3    Takahashi, K.4    Tomita, M.5
  • 19
    • 20144387371 scopus 로고    scopus 로고
    • Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm
    • Kimura S, Ide K, Kashihara A, et al. Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics. 2005; 21(7): 1154-63.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1154-1163
    • Kimura, S.1    Ide, K.2    Kashihara, A.3
  • 20
    • 33645127005 scopus 로고    scopus 로고
    • System oriented neural networks problem formulation, methodology, and application
    • KLi, Peng J. System oriented neural networks problem formulation, methodology, and application. Int J Pattern Recognit Artif Intell. 2006; 20: 143-58.
    • (2006) Int J Pattern Recognit Artif Intell , vol.20 , pp. 143-158
    • Li, K.1    Peng, J.2
  • 22
    • 38649104174 scopus 로고    scopus 로고
    • A clustering-based approach for inferring recurrent neural networks as gene regulatory networks
    • Lee WP, Yang KC. A clustering-based approach for inferring recurrent neural networks as gene regulatory networks. Neurocomputing. 2008; 71: 600-10.
    • (2008) Neurocomputing , vol.71 , pp. 600-610
    • Lee, W.P.1    Yang, K.C.2
  • 24
    • 79960729016 scopus 로고    scopus 로고
    • Eng-genes: a new genetic modelling approach for nonlinear dynamic systems
    • Li K. Eng-genes: a new genetic modelling approach for nonlinear dynamic systems. In: Proceedings of the 16th IFAC world congress; 2005.
    • (2005) Proceedings of the 16th IFAC world congress
    • Li, K.1
  • 25
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: an architecture for evolving coadapted subcomponents
    • Potter MA, Jong KAD. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput. 2000; 8: 1-29.
    • (2000) Evol Comput , vol.8 , pp. 1-29
    • Potter, M.A.1    Jong, K.A.D.2
  • 26
    • 34548528157 scopus 로고    scopus 로고
    • Biochemical and statistical network models for systems biology
    • Price ND, Shmulevich I. Biochemical and statistical network models for systems biology. Curr Opin Biotechnol. 2007; 18(4): 365-70.
    • (2007) Curr Opin Biotechnol , vol.18 , Issue.4 , pp. 365-370
    • Price, N.D.1    Shmulevich, I.2
  • 28
    • 0034863951 scopus 로고    scopus 로고
    • Inferring a system of differential equations for a gene regulatory network by using genetic programming
    • Sakamoto E, Iba H. Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the 2001 congress on evolutionary computation, vol 1; 2001. p. 720-6.
    • (2001) Proceedings of the 2001 congress on evolutionary computation , vol.1 , pp. 720-726
    • Sakamoto, E.1    Iba, H.2
  • 30
    • 15744367955 scopus 로고    scopus 로고
    • Overview of computational methods for the inference of gene regulatory networks
    • Styczynski MP, Stephanopoulos G. Overview of computational methods for the inference of gene regulatory networks. Comput Chem Eng. 2005; 29: 519-34.
    • (2005) Comput Chem Eng , vol.29 , pp. 519-534
    • Styczynski, M.P.1    Stephanopoulos, G.2
  • 31
    • 17044395470 scopus 로고    scopus 로고
    • Reverse engineering of biochemical equations from time-course data by means of genetic programming
    • Sugimoto M, Kikuchi S, Tomita M. Reverse engineering of biochemical equations from time-course data by means of genetic programming. Biosystems. 2005; 80(2): 155-64.
    • (2005) Biosystems , vol.80 , Issue.2 , pp. 155-164
    • Sugimoto, M.1    Kikuchi, S.2    Tomita, M.3
  • 33
    • 33845730788 scopus 로고    scopus 로고
    • Perturbations to uncover gene networks
    • Tegner J, Björkegren J. Perturbations to uncover gene networks. Trends Genet. 2006; 23(1): 34-41.
    • (2006) Trends Genet , vol.23 , Issue.1 , pp. 34-41
    • Tegner, J.1    Björkegren, J.2
  • 35
    • 33947193380 scopus 로고    scopus 로고
    • Incremental coevolution with competitive and cooperative tasks in a multirobot environment
    • Uchibe E, Asada M. Incremental coevolution with competitive and cooperative tasks in a multirobot environment. Proc IEEE. 2006; 94: 1412-24.
    • (2006) Proc IEEE , vol.94 , pp. 1412-1424
    • Uchibe, E.1    Asada, M.2
  • 36
    • 44049102421 scopus 로고    scopus 로고
    • A systems biology approach to analyse amplification in the jak2-stat5 signalling pathway
    • Vera J, JBachmann, Pfeifer A, et al. A systems biology approach to analyse amplification in the jak2-stat5 signalling pathway. BMC Syst Biol. 2008; 2(1): 38.
    • (2008) BMC Syst Biol , vol.2 , Issue.1 , pp. 38
    • Vera, J.1    Bachmann, J.2    Pfeifer, A.3
  • 38
    • 4444351989 scopus 로고    scopus 로고
    • Decoupling dynamical systems for pathway identification from metabolic profiles
    • Voit EO, Almeida J. Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics. 2004; 20(11): 1670-81.
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1670-1681
    • Voit, E.O.1    Almeida, J.2
  • 39
    • 48249131626 scopus 로고    scopus 로고
    • Short time-series microarray analysis: methods and challenges
    • Wang X, Wu M, Li Z, Chan C. Short time-series microarray analysis: methods and challenges. BMC Syst Biol. 2008; 2(1): 58.
    • (2008) BMC Syst Biol , vol.2 , Issue.1 , pp. 58
    • Wang, X.1    Wu, M.2    Li, Z.3    Chan, C.4
  • 40
    • 40849105031 scopus 로고    scopus 로고
    • Approaches to working in high-dimensional data spaces: gene expression microarrays
    • Wang Y, Miller DJ, Clarke R. Approaches to working in high-dimensional data spaces: gene expression microarrays. Br J Cancer. 2008; 98(6): 1023-8.
    • (2008) Br J Cancer , vol.98 , Issue.6 , pp. 1023-1028
    • Wang, Y.1    Miller, D.J.2    Clarke, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.