메뉴 건너뛰기




Volumn 8, Issue 12, 2013, Pages

Sparsity as cellular objective to infer directed metabolic networks from steady-state metabolome data: A theoretical analysis

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; BACTERIUM; CONCEPTUAL FRAMEWORK; COVARIANCE; DATA ANALYSIS; FUNGUS; MAMMAL; MATHEMATICAL ANALYSIS; MATHEMATICAL COMPUTING; METABOLIC REGULATION; METABOLOME; STEADY STATE; THEORETICAL STUDY;

EID: 84896721750     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0084505     Document Type: Article
Times cited : (11)

References (33)
  • 1
    • 33846017352 scopus 로고    scopus 로고
    • The nature of systems biology
    • DOI 10.1016/j.tim.2006.11.003, PII S0966842X06002642
    • Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15: 45-50. (Pubitemid 46043550)
    • (2007) Trends in Microbiology , vol.15 , Issue.1 , pp. 45-50
    • Bruggeman, F.J.1    Westerhoff, H.V.2
  • 2
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • Smet RD, Marchal K (2010) Advantages and limitations of current network inference methods. Nat Rev Microbiol 8: 717-729.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 717-729
    • Smet, R.D.1    Marchal, K.2
  • 3
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks - A review
    • Markowetz F, Spang R (2007) Inferring cellular networks - a review. BMC Bioinforma 8: 5.
    • (2007) BMC Bioinforma , vol.8 , pp. 5
    • Markowetz, F.1    Spang, R.2
  • 4
    • 73449106062 scopus 로고    scopus 로고
    • Reconstructing transcriptional regulatory networks through genomics data
    • Sun N, Zhao H (2009) Reconstructing transcriptional regulatory networks through genomics data. Stat Methods Med Res 18: 595-617.
    • (2009) Stat Methods Med Res , vol.18 , pp. 595-617
    • Sun, N.1    Zhao, H.2
  • 6
    • 70249151450 scopus 로고    scopus 로고
    • Metabolic network discovery through reverse engineering of metabolome data
    • Çakir T, Hendriks MM, Westerhuis JA, Smilde AK (2009) Metabolic network discovery through reverse engineering of metabolome data. Metabolomics 5: 318-329.
    • (2009) Metabolomics , vol.5 , pp. 318-329
    • Çakir, T.1    Hendriks, M.M.2    Westerhuis, J.A.3    Smilde, A.K.4
  • 8
    • 36248940715 scopus 로고    scopus 로고
    • Reconstruction of metabolic networks from high-throughput metabolite profiling data: In silico analysis of red blood cell metabolism
    • DOI 10.1196/annals.1407.013, Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for Pathway Inference
    • Nemenman I, Escola GS, Hlavacek WS, Unkefer PJ, Unkefer CJ, et al. (2007) Reconstruction of Metabolic Networks from High-Throughput Metabolite Profiling Data: In Silico Analysis of Red Blood Cell Metabolism. Ann New York Acad Sci 1115: 102-115. (Pubitemid 350134802)
    • (2007) Annals of the New York Academy of Sciences , vol.1115 , pp. 102-115
    • Nemenman, I.1    Escola, G.S.2    Hlavacek, W.S.3    Unkefer, P.J.4    Unkefer, C.J.5    Wall, M.E.6
  • 9
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinforma 7 Suppl 1: S7.
    • (2006) BMC Bioinforma , vol.7 , Issue.SUPPL. 1
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5
  • 10
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data
    • DOI 10.1093/bioinformatics/btm163
    • Soranzo N, Bianconi G, Altafini C (2007) Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 23: 1640-1647. (Pubitemid 47244454)
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1640-1647
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 11
    • 4444226267 scopus 로고    scopus 로고
    • Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data
    • DOI 10.1093/bioinformatics/bth173
    • Sontag E, Kiyatkin A, Kholodenko BN (2004) Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20: 1877-1886. (Pubitemid 39199051)
    • (2004) Bioinformatics , vol.20 , Issue.12 , pp. 1877-1886
    • Sontag, E.1    Kiyatkin, A.2    Kholodenko, B.N.3
  • 12
    • 0036683181 scopus 로고    scopus 로고
    • Linking the genes: Inferring quantitative gene networks from microarray data
    • DOI 10.1016/S0168-9525(02)02692-6, PII S0168952502026926
    • Fuente A de la, Brazhnik P, Mendes P (2002) Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet 18: 395-398. (Pubitemid 34874536)
    • (2002) Trends in Genetics , vol.18 , Issue.8 , pp. 395-398
    • De La, F.A.1    Brazhnik, P.2    Mendes, P.3
  • 13
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1: 37.
    • (2007) BMC Syst Biol , vol.1 , pp. 37
    • Rhein, R.1    Strimmer, K.2
  • 14
    • 0036789922 scopus 로고    scopus 로고
    • Untangling the wires: A strategy to trace functional interactions in signaling and gene networks
    • Kholodenko B, Kiyatkin A, Bruggeman F, Sontag E, Westerhoff H, et al. (2002) Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci 99: 12841-12846.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 12841-12846
    • Kholodenko, B.1    Kiyatkin, A.2    Bruggeman, F.3    Sontag, E.4    Westerhoff, H.5
  • 15
    • 2342419140 scopus 로고    scopus 로고
    • Metabolic Pathway Analysis of Yeast Strengthens the Bridge between Transcriptomics and Metabolic Networks
    • DOI 10.1002/bit.20020
    • Cakir T, Kirdar B, Ülgen KÖ (2004) Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol Bioeng 86: 251-260. (Pubitemid 38560353)
    • (2004) Biotechnology and Bioengineering , vol.86 , Issue.3 , pp. 251-260
    • Cakir, T.1    Kirdar, B.2    Ulgen, K.O.3
  • 16
    • 0037079050 scopus 로고    scopus 로고
    • Metabolic network structure determines key aspects of functionality and regulation
    • DOI 10.1038/nature01166
    • Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420: 190-193. (Pubitemid 35340124)
    • (2002) Nature , vol.420 , Issue.6912 , pp. 190-193
    • Stelling, J.1    Klamt, S.2    Bettenbrock, K.3    Schuster, S.4    Gilles, E.D.5
  • 17
    • 0038281453 scopus 로고    scopus 로고
    • Observing and interpreting correlations in metabolomic networks
    • DOI 10.1093/bioinformatics/btg120
    • Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Observing and interpreting correlations in metabolomic networks. Bioinformatics 19: 1019-1026. (Pubitemid 36675824)
    • (2003) Bioinformatics , vol.19 , Issue.8 , pp. 1019-1026
    • Steuer, R.1    Kurths, J.2    Fiehn, O.3    Weckwerth, W.4
  • 18
    • 33846048300 scopus 로고    scopus 로고
    • When transcriptome meets metabolome: Fast cellular responses of yeast to sudden relief of glucose limitation
    • Kresnowati MTAP, Van Winden WA, Almering MJH, Ten Pierick A, Ras C, et al. (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2: 49.
    • (2006) Mol Syst Biol , vol.2 , pp. 49
    • Kresnowati, M.T.A.P.1    Van Winden, W.A.2    Almering, M.J.H.3    Ten Pierick, A.4    Ras, C.5
  • 21
    • 84862802794 scopus 로고    scopus 로고
    • COVAIN: A toolbox for uni-and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data
    • Sun X, Weckwerth W (2012) COVAIN: a toolbox for uni-and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 8: 81-93.
    • (2012) Metabolomics , vol.8 , pp. 81-93
    • Sun, X.1    Weckwerth, W.2
  • 22
    • 33845730788 scopus 로고    scopus 로고
    • Perturbations to uncover gene networks
    • Tegnér J, Björkegren J (2007) Perturbations to uncover gene networks. Trends Genet 23: 34-41.
    • (2007) Trends Genet , vol.23 , pp. 34-41
    • Tegnér, J.1    Björkegren, J.2
  • 23
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil KR, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinforma 6: 308.
    • (2005) BMC Bioinforma , vol.6 , pp. 308
    • Patil, K.R.1    Rocha, I.2    Förster, J.3    Nielsen, J.4
  • 24
    • 0031998121 scopus 로고    scopus 로고
    • Machine Learning for the Detection of Oil Spills in Satellite Radar Images
    • Kubat M, Holte RC, Matwin S (1998) Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Mach Learn 30: 195-215.
    • (1998) Mach Learn , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 25
    • 33847324364 scopus 로고    scopus 로고
    • Cross-talk and decision making in MAP kinase pathways
    • DOI 10.1038/ng1957, PII NG1957
    • McClean MN, Mody A, Broach JR, Ramanathan S (2007) Cross-talk and decision making in MAP kinase pathways. Nat Genet 39: 409-414. (Pubitemid 46328483)
    • (2007) Nature Genetics , vol.39 , Issue.3 , pp. 409-414
    • McClean, M.N.1    Mody, A.2    Broach, J.R.3    Ramanathan, S.4
  • 26
    • 77953934646 scopus 로고    scopus 로고
    • BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models
    • Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, et al. (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4: 92.
    • (2010) BMC Syst Biol , vol.4 , pp. 92
    • Li, C.1    Donizelli, M.2    Rodriguez, N.3    Dharuri, H.4    Endler, L.5
  • 27
    • 0035544044 scopus 로고    scopus 로고
    • Modelling of the coupling between brain electrical activity and metabolism
    • DOI 10.1023/A:1014286728421
    • Aubert A, Costalat R, Valabrègue R (2001) Modelling of the coupling between brain electrical activity and metabolism. Acta Biotheor 49: 301-326. (Pubitemid 34060452)
    • (2001) Acta Biotheoretica , vol.49 , Issue.4 , pp. 301-326
    • Aubert, A.1    Costalat, R.2    Valabregue, R.3
  • 28
    • 0033857139 scopus 로고    scopus 로고
    • Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry
    • Teusink B, Passarge J, Reijenga CA, Esgalhado E, Weijden CC van der, et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267: 5313-5329.
    • (2000) Eur J Biochem , vol.267 , pp. 5313-5329
    • Teusink, B.1    Passarge, J.2    Reijenga, C.A.3    Esgalhado, E.4    Van Der Weijden, C.C.5
  • 30
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • DOI 10.1093/bioinformatics/bti062
    • Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21: 754-764. (Pubitemid 40439411)
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 31
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • DOI 10.1093/bioinformatics/bth445
    • Fuente A de la, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20: 3565-3574. (Pubitemid 40136792)
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3565-3574
    • De La, F.A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 32
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T (2010) Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 26.
    • (2010) Bioinformatics , vol.26
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 33
    • 77957784850 scopus 로고    scopus 로고
    • Designing experiments from noisy metabolomics data to refine constraint-based models
    • Yang L, Mahadevan R, Cluett WR (2010) Designing experiments from noisy metabolomics data to refine constraint-based models. American Control Conference (ACC), 2010. 5143-5148.
    • (2010) American Control Conference (ACC), 2010 , pp. 5143-5148
    • Yang, L.1    Mahadevan, R.2    Cluett, W.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.