메뉴 건너뛰기




Volumn 8, Issue , 2017, Pages

Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; ELONGATION FACTOR; ELONGATION FACTOR TFIIS; INITIATION FACTOR; INITIATION FACTOR TFIIF; MESSENGER RNA; POLYMERASE ASSOCIATED FACTOR 1 COMPLEX; PROTEIN; RECOMBINANT ENZYME; RNA POLYMERASE II; RPB2 PROTEIN; RPB3 PROTEIN; UNCLASSIFIED DRUG; CELL CYCLE PROTEIN; CROSS LINKING REAGENT; CTR9 PROTEIN, S CEREVISIAE; LEO1 PROTEIN, S CEREVISIAE; MULTIPROTEIN COMPLEX; NUCLEAR PROTEIN; PAF1 PROTEIN, S CEREVISIAE; RECOMBINANT PROTEIN; RNA BINDING PROTEIN; RPB2 PROTEIN, S CEREVISIAE; RPB3 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; TRANSCRIPTION ELONGATION FACTOR; TRANSCRIPTION FACTOR S-II;

EID: 85020418489     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms15741     Document Type: Article
Times cited : (70)

References (80)
  • 1
    • 84875056702 scopus 로고    scopus 로고
    • The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states
    • Tomson, B. N. & Arndt, K. M. The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. Biochim. Biophys. Acta 1829, 116-126 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 116-126
    • Tomson, B.N.1    Arndt, K.M.2
  • 2
    • 0030221376 scopus 로고    scopus 로고
    • A novel collection of accessory factors associated with yeast RNA polymerase II
    • Wade, P. A. et al. A novel collection of accessory factors associated with yeast RNA polymerase II. Protein Expr. Purif. 8, 85-90 (1996).
    • (1996) Protein Expr. Purif , vol.8 , pp. 85-90
    • Wade, P.A.1
  • 3
    • 0031027465 scopus 로고    scopus 로고
    • Cdc73p and Paf1p are found in a novel RNA polymerase IIcontaining complex distinct from the Srbp-containing holoenzyme
    • Shi, X. et al. Cdc73p and Paf1p are found in a novel RNA polymerase IIcontaining complex distinct from the Srbp-containing holoenzyme. Mol. Cell Biol. 17, 1160-1169 (1997).
    • (1997) Mol. Cell Biol , vol.17 , pp. 1160-1169
    • Shi, X.1
  • 4
    • 77953277032 scopus 로고    scopus 로고
    • The Paf1 complex: Platform or player in RNA polymerase II transcription? Biochim
    • Jaehning, J. A. The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim. Biophys. Acta 1799, 379-388 (2010).
    • (2010) Biophys. Acta , vol.1799 , pp. 379-388
    • Jaehning, J.A.1
  • 5
    • 0037007217 scopus 로고    scopus 로고
    • The Paf1 complex physically and functionally associates with transcription elongation factors in vivo
    • Squazzo, S. L. et al. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J. 21, 1764-1774 (2002).
    • (2002) EMBO J , vol.21 , pp. 1764-1774
    • Squazzo, S.L.1
  • 6
    • 0036241663 scopus 로고    scopus 로고
    • Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo
    • Pokholok, D. K., Hannett, N. M. & Young, R. A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 9, 799-809 (2002).
    • (2002) Mol. Cell , vol.9 , pp. 799-809
    • Pokholok, D.K.1    Hannett, N.M.2    Young, R.A.3
  • 7
    • 1242298517 scopus 로고    scopus 로고
    • Molecular evidence indicating that the yeast PAF complex is required for transcription elongation
    • Rondon, A. G., Gallardo, M., Garcia-Rubio, M. & Aguilera, A. Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Rep. 5, 47-53 (2004).
    • (2004) EMBO Rep , vol.5 , pp. 47-53
    • Rondon, A.G.1    Gallardo, M.2    Garcia-Rubio, M.3    Aguilera, A.4
  • 8
    • 0037524702 scopus 로고    scopus 로고
    • The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: Linking transcriptional elongation to histone methylation
    • Krogan, N. J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721-729 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 721-729
    • Krogan, N.J.1
  • 9
    • 0345698603 scopus 로고    scopus 로고
    • Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes
    • Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846-1856 (2003).
    • (2003) EMBO J , vol.22 , pp. 1846-1856
    • Simic, R.1
  • 10
    • 0141483281 scopus 로고    scopus 로고
    • The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B
    • Ng, H. H., Dole, S. & Struhl, K. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278, 33625-33628 (2003).
    • (2003) J Biol Chem , vol.278 , pp. 33625-33628
    • Ng, H.H.1    Dole, S.2    Struhl, K.3
  • 11
    • 0042818412 scopus 로고    scopus 로고
    • The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
    • Wood, A., Schneider, J., Dover, J., Johnston, M. & Shilatifard, A. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278, 34739-34742 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 34739-34742
    • Wood, A.1    Schneider, J.2    Dover, J.3    Johnston, M.4    Shilatifard, A.5
  • 12
    • 11844297340 scopus 로고    scopus 로고
    • Histone H2B ubiquitylation is associated with elongating RNA polymerase II
    • Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell Biol. 25, 637-651 (2005).
    • (2005) Mol. Cell Biol , vol.25 , pp. 637-651
    • Xiao, T.1
  • 13
    • 34548221891 scopus 로고    scopus 로고
    • Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification
    • Warner, M. H., Roinick, K. L. & Arndt, K. M. Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol. Cell Biol. 27, 6103-6115 (2007).
    • (2007) Mol. Cell Biol , vol.27 , pp. 6103-6115
    • Warner, M.H.1    Roinick, K.L.2    Arndt, K.M.3
  • 14
    • 33747072028 scopus 로고    scopus 로고
    • Drosophila Rtf1 functions in histone methylation, gene expression, and Notch signaling
    • Tenney, K. et al. Drosophila Rtf1 functions in histone methylation, gene expression, and Notch signaling. Proc. Natl Acad. Sci. USA 103, 11970-11974 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 11970-11974
    • Tenney, K.1
  • 15
    • 84859585596 scopus 로고    scopus 로고
    • Histone H3R17me2a mark recruits human RNA polymeraseassociated factor 1 complex to activate transcription
    • Wu, J. & Xu, W. Histone H3R17me2a mark recruits human RNA polymeraseassociated factor 1 complex to activate transcription. Proc. Natl Acad. Sci. USA 109, 5675-5680 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 5675-5680
    • Wu, J.1    Xu, W.2
  • 16
    • 26944479278 scopus 로고    scopus 로고
    • A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 30 end formation
    • Sheldon, K. E., Mauger, D. M. & Arndt, K. M. A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 30 end formation. Mol. Cell 20, 225-236 (2005).
    • (2005) Mol Cell , vol.20 , pp. 225-236
    • Sheldon, K.E.1    Mauger, D.M.2    Arndt, K.M.3
  • 17
    • 26944435516 scopus 로고    scopus 로고
    • A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets
    • Penheiter, K. L., Washburn, T. M., Porter, S. E., Hoffman, M. G. & Jaehning, J. A. A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets. Mol. Cell 20, 213-223 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 213-223
    • Penheiter, K.L.1    Washburn, T.M.2    Porter, S.E.3    Hoffman, M.G.4    Jaehning, J.A.5
  • 18
    • 58849148029 scopus 로고    scopus 로고
    • The tumor suppressor Cdc73 functionally associates with CPSF and CstF 30 mRNA processing factors
    • Rozenblatt-Rosen, O. et al. The tumor suppressor Cdc73 functionally associates with CPSF and CstF 30 mRNA processing factors. Proc. Natl Acad. Sci. USA 106, 755-760 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 755-760
    • Rozenblatt-Rosen, O.1
  • 19
    • 36248965214 scopus 로고    scopus 로고
    • Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes
    • Chu, Y., Simic, R., Warner, M. H., Arndt, K. M. & Prelich, G. Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J. 26, 4646-4656 (2007).
    • (2007) EMBO J , vol.26 , pp. 4646-4656
    • Chu, Y.1    Simic, R.2    Warner, M.H.3    Arndt, K.M.4    Prelich, G.5
  • 20
    • 84899937257 scopus 로고    scopus 로고
    • The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans
    • Kubota, Y. et al. The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans. Dev. Biol. 391, 43-53 (2014).
    • (2014) Dev. Biol , vol.391 , pp. 43-53
    • Kubota, Y.1
  • 21
    • 35348894883 scopus 로고    scopus 로고
    • Human RNA polymerase II-Associated factor complex: Dysregulation in cancer
    • Chaudhary, K., Deb, S., Moniaux, N., Ponnusamy, M. P. & Batra, S. K. Human RNA polymerase II-Associated factor complex: dysregulation in cancer. Oncogene 26, 7499-7507 (2007).
    • (2007) Oncogene , vol.26 , pp. 7499-7507
    • Chaudhary, K.1    Deb, S.2    Moniaux, N.3    Ponnusamy, M.P.4    Batra, S.K.5
  • 22
    • 79957516061 scopus 로고    scopus 로고
    • PAFc, a key player in MLL-rearranged leukemogenesis
    • Tan, J., Muntean, A. G. & Hess, J. L. PAFc, a key player in MLL-rearranged leukemogenesis. Oncotarget 1, 461-465 (2010).
    • (2010) Oncotarget , vol.1 , pp. 461-465
    • Tan, J.1    Muntean, A.G.2    Hess, J.L.3
  • 23
    • 79959861920 scopus 로고    scopus 로고
    • SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver
    • Takahashi, A. et al. SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol. Cell 43, 45-56 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 45-56
    • Takahashi, A.1
  • 24
    • 84927558521 scopus 로고    scopus 로고
    • The Paf1 complex represses small-RNA-mediated epigenetic gene silencing
    • Kowalik, K. M. et al. The Paf1 complex represses small-RNA-mediated epigenetic gene silencing. Nature 520, 248-252 (2015).
    • (2015) Nature , vol.520 , pp. 248-252
    • Kowalik, K.M.1
  • 25
    • 84935000852 scopus 로고    scopus 로고
    • Global regulation of heterochromatin spreading by Leo1
    • Verrier, L. et al. Global regulation of heterochromatin spreading by Leo1. Open Biol. 5, 150045 (2015).
    • (2015) Open Biol , vol.5 , pp. 150045
    • Verrier, L.1
  • 26
    • 84940459954 scopus 로고    scopus 로고
    • PAF1, a molecular regulator of promoter-proximal pausing by RNA polymerase II
    • Chen, F. X. et al. PAF1, a molecular regulator of promoter-proximal pausing by rna polymerase II. Cell 162, 1003-1015 (2015).
    • (2015) Cell , vol.162 , pp. 1003-1015
    • Chen, F.X.1
  • 27
    • 84949665455 scopus 로고    scopus 로고
    • RNA polymerase II-Associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II
    • Yu, M. et al. RNA polymerase II-Associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Science 350, 1383-1386 (2015).
    • (2015) Science , vol.350 , pp. 1383-1386
    • Yu, M.1
  • 28
    • 84957805308 scopus 로고    scopus 로고
    • Mec1 INO80 and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress
    • Poli, J. et al. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev. 30, 337-354 (2016).
    • (2016) Genes Dev , vol.30 , pp. 337-354
    • Poli, J.1
  • 29
    • 77957766550 scopus 로고    scopus 로고
    • Uniform transitions of the general RNA polymerase II transcription complex
    • Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272-1278 (2010).
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 1272-1278
    • Mayer, A.1
  • 30
    • 23944445861 scopus 로고    scopus 로고
    • BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex
    • Laribee, R. N. et al. BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr. Biol. 15, 1487-1493 (2005).
    • (2005) Curr. Biol , vol.15 , pp. 1487-1493
    • Laribee, R.N.1
  • 31
    • 33645814013 scopus 로고    scopus 로고
    • The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II
    • Qiu, H., Hu, C., Wong, C. M. & Hinnebusch, A. G. The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol. Cell Biol. 26, 3135-3148 (2006).
    • (2006) Mol. Cell Biol , vol.26 , pp. 3135-3148
    • Qiu, H.1    Hu, C.2    Wong, C.M.3    Hinnebusch, A.G.4
  • 32
    • 84865212050 scopus 로고    scopus 로고
    • Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex
    • Qiu, H., Hu, C., Gaur, N. A. & Hinnebusch, A. G. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J. 31, 3494-3505 (2012).
    • (2012) EMBO J , vol.31 , pp. 3494-3505
    • Qiu, H.1    Hu, C.2    Gaur, N.A.3    Hinnebusch, A.G.4
  • 33
    • 84881276041 scopus 로고    scopus 로고
    • The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex
    • Mayekar, M. K., Gardner, R. G. & Arndt, K. M. The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mol. Cell Biol. 33, 3259-3273 (2013).
    • (2013) Mol. Cell Biol , vol.33 , pp. 3259-3273
    • Mayekar, M.K.1    Gardner, R.G.2    Arndt, K.M.3
  • 34
    • 84944544167 scopus 로고    scopus 로고
    • Characterization of the human transcription elongation factor Rtf1: Evidence for nonoverlapping functions of Rtf1 and the Paf1 Complex
    • Cao, Q. F. et al. Characterization of the human transcription elongation factor Rtf1: evidence for nonoverlapping functions of Rtf1 and the Paf1 Complex. Mol. Cell Biol. 35, 3459-3470 (2015).
    • (2015) Mol. Cell Biol , vol.35 , pp. 3459-3470
    • Cao, Q.F.1
  • 35
    • 84892766966 scopus 로고    scopus 로고
    • The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast
    • Mbogning, J. et al. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast. PLoS Genet. 9, e1004029 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1004029
    • Mbogning, J.1
  • 36
    • 84859514630 scopus 로고    scopus 로고
    • Cdc73 subunit of Paf1 complex contains C-Terminal Raslike domain that promotes association of Paf1 complex with chromatin
    • Amrich, C. G. et al. Cdc73 subunit of Paf1 complex contains C-Terminal Raslike domain that promotes association of Paf1 complex with chromatin. J. Biol. Chem. 287, 10863-10875 (2012).
    • (2012) J. Biol. Chem , vol.287 , pp. 10863-10875
    • Amrich, C.G.1
  • 37
    • 77958559139 scopus 로고    scopus 로고
    • Leo1 subunit of the yeast paf1 complex binds RNA and contributes to complex recruitment
    • Dermody, J. L. & Buratowski, S. Leo1 subunit of the yeast paf1 complex binds RNA and contributes to complex recruitment. J. Biol. Chem. 285, 33671-33679 (2010).
    • (2010) J. Biol. Chem , vol.285 , pp. 33671-33679
    • Dermody, J.L.1    Buratowski, S.2
  • 38
    • 84890411730 scopus 로고    scopus 로고
    • Structural insights into Paf1 complex assembly and histone binding
    • Chu, X. et al. Structural insights into Paf1 complex assembly and histone binding. Nucleic Acids Res. 41, 10619-10629 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. 10619-10629
    • Chu, X.1
  • 39
    • 84864879361 scopus 로고    scopus 로고
    • Crystallographic analysis of the conserved C-Terminal domain of transcription factor Cdc73 from Saccharomyces cerevisiae reveals a GTPase-like fold
    • Chen, H. et al. Crystallographic analysis of the conserved C-Terminal domain of transcription factor Cdc73 from Saccharomyces cerevisiae reveals a GTPase-like fold. Acta Crystallogr. D 68, 953-959 (2012).
    • (2012) Acta Crystallogr D , vol.68 , pp. 953-959
    • Chen, H.1
  • 40
    • 37549056194 scopus 로고    scopus 로고
    • Structure and DNA binding of the human Rtf1 Plus3 domain
    • de Jong, R. N. et al. Structure and DNA binding of the human Rtf1 Plus3 domain. Structure 16, 149-159 (2008).
    • (2008) Structure , vol.16 , pp. 149-159
    • De Jong, R.N.1
  • 41
  • 42
    • 84946060416 scopus 로고    scopus 로고
    • SMART: Recent updates, new developments and status in 2015
    • Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43, D257-D260 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. D257-D260
    • Letunic, I.1    Doerks, T.2    Bork, P.3
  • 43
    • 84994397821 scopus 로고    scopus 로고
    • The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis
    • Alva, V., Nam, S. Z., Soding, J. & Lupas, A. N. The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 44, W410-W415 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. W410-W415
    • Alva, V.1    Nam, S.Z.2    Soding, J.3    Lupas, A.N.4
  • 44
    • 84995646150 scopus 로고    scopus 로고
    • The histone modification domain of Paf1 complex subunit Rtf1 directly stimulates H2B ubiquitylation through an interaction with Rad6
    • Van Oss, S. B. et al. The histone modification domain of Paf1 complex subunit Rtf1 directly stimulates H2B ubiquitylation through an interaction with Rad6. Mol. Cell 64, 815-825 (2016).
    • (2016) Mol. Cell , vol.64 , pp. 815-825
    • Van Oss, S.B.1
  • 45
    • 76749090562 scopus 로고    scopus 로고
    • The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS
    • Kim, J., Guermah, M. & Roeder, R. G. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 140, 491-503 (2010).
    • (2010) Cell , vol.140 , pp. 491-503
    • Kim, J.1    Guermah, M.2    Roeder, R.G.3
  • 46
    • 0043244876 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage
    • Kettenberger, H., Armache, K. J. & Cramer, P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114, 347-357 (2003).
    • (2003) Cell , vol.114 , pp. 347-357
    • Kettenberger, H.1    Armache, K.J.2    Cramer, P.3
  • 47
    • 67449116330 scopus 로고    scopus 로고
    • Structural basis of transcription: Mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA
    • Sydow, J. F. et al. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell 34, 710-721 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 710-721
    • Sydow, J.F.1
  • 49
    • 79952440464 scopus 로고    scopus 로고
    • Structural basis of RNA polymerase II backtracking, arrest and reactivation
    • Cheung, A. C. & Cramer, P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471, 249-253 (2011).
    • (2011) Nature , vol.471 , pp. 249-253
    • Cheung, A.C.1    Cramer, P.2
  • 50
    • 77957239250 scopus 로고    scopus 로고
    • GraFix stabilization of fragile macromolecular complexes for single particle cryo-EM
    • Stark, H. GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol. 481, 109-126 (2010).
    • (2010) Methods Enzymol , vol.481 , pp. 109-126
    • Stark, H.1
  • 51
    • 84868444740 scopus 로고    scopus 로고
    • RELION: Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530 (2012).
    • (2012) J. Struct. Biol , vol.180 , pp. 519-530
    • Scheres, H.S.1
  • 52
    • 84937422854 scopus 로고    scopus 로고
    • Crystal structure of a transcribing RNA polymerase II complex reveals a complete transcription bubble
    • Barnes, C. O. et al. Crystal structure of a transcribing RNA polymerase II complex reveals a complete transcription bubble. Mol. Cell 59, 258-269 (2015).
    • (2015) Mol. Cell , vol.59 , pp. 258-269
    • Barnes, C.O.1
  • 53
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera-A visualization system for exploratory research and analysis
    • Pettersen, E. F. et al. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004).
    • (2004) J. Comput. Chem , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1
  • 54
    • 84970976578 scopus 로고    scopus 로고
    • Transcription initiation complex structures elucidate DNA opening
    • Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353-358 (2016).
    • (2016) Nature , vol.533 , pp. 353-358
    • Plaschka, C.1
  • 55
    • 84959377754 scopus 로고    scopus 로고
    • Determinants of RNA metabolism in the Schizosaccharomyces pombe genome
    • Eser, P. et al. Determinants of RNA metabolism in the Schizosaccharomyces pombe genome. Mol. Syst. Biol. 12, 857 (2016).
    • (2016) Mol. Syst. Biol , vol.12 , pp. 857
    • Eser, P.1
  • 56
    • 78650930357 scopus 로고    scopus 로고
    • Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast
    • Miller, C. et al. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol. Syst. Biol. 7, 458 (2011).
    • (2011) Mol. Syst. Biol , vol.7 , pp. 458
    • Miller, C.1
  • 57
    • 84889591723 scopus 로고    scopus 로고
    • Transcriptome surveillance by selective termination of noncoding RNA synthesis
    • Schulz, D. et al. Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 155, 1075-1087 (2013).
    • (2013) Cell , vol.155 , pp. 1075-1087
    • Schulz, D.1
  • 58
    • 84975072539 scopus 로고    scopus 로고
    • TT-seq maps the human transient transcriptome
    • Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225-1228 (2016).
    • (2016) Science , vol.352 , pp. 1225-1228
    • Schwalb, B.1
  • 59
    • 84889026690 scopus 로고    scopus 로고
    • RNA polymerase II transcription elongation control
    • Guo, J. & Price, D. H. RNA polymerase II transcription elongation control. Chem. Rev. 113, 8583-8603 (2013).
    • (2013) Chem. Rev , vol.113 , pp. 8583-8603
    • Guo, J.1    Price, D.H.2
  • 60
    • 84887161037 scopus 로고    scopus 로고
    • Control of transcriptional elongation
    • Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483-508 (2013).
    • (2013) Annu. Rev. Genet , vol.47 , pp. 483-508
    • Kwak, H.1    Lis, J.T.2
  • 61
    • 79960440046 scopus 로고    scopus 로고
    • The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation
    • Grohmann, D. et al. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell 43, 263-274 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 263-274
    • Grohmann, D.1
  • 62
    • 79953779997 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
    • Martinez-Rucobo, F. W., Sainsbury, S., Cheung, A. C. & Cramer, P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 30, 1302-1310 (2011).
    • (2011) EMBO J , vol.30 , pp. 1302-1310
    • Martinez-Rucobo, F.W.1    Sainsbury, S.2    Cheung, A.C.3    Cramer, P.4
  • 63
    • 0029074137 scopus 로고
    • Recycling of the general transcription factors during RNA polymerase II transcription
    • Zawel, L., Kumar, K. P. & Reinberg, D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9, 1479-1490 (1995).
    • (1995) Genes Dev , vol.9 , pp. 1479-1490
    • Zawel, L.1    Kumar, K.P.2    Reinberg, D.3
  • 64
    • 84866117936 scopus 로고    scopus 로고
    • Identification of cross-linked peptides from complex samples
    • Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904-906 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 904-906
    • Yang, B.1
  • 65
    • 84926486138 scopus 로고    scopus 로고
    • XiNET: Cross-link network maps with residue resolution
    • Combe, C. W., Fischer, L. & Rappsilber, J. xiNET: cross-link network maps with residue resolution. Mol. Cell Proteomics 14, 1137-1147 (2015).
    • (2015) Mol. Cell Proteomics , vol.14 , pp. 1137-1147
    • Combe, C.W.1    Fischer, L.2    Rappsilber, J.3
  • 66
    • 79960898027 scopus 로고    scopus 로고
    • Computer controlled cryo-electron microscopy-TOM (2) a software package for highthroughput applications
    • Korinek, A., Beck, F., Baumeister, W., Nickell, S. & Plitzko, J. M. Computer controlled cryo-electron microscopy-TOM(2) a software package for highthroughput applications. J. Struct. Biol. 175, 394-405 (2011).
    • (2011) J. Struct. Biol , vol.175 , pp. 394-405
    • Korinek, A.1    Beck, F.2    Baumeister, W.3    Nickell, S.4    Plitzko, J.M.5
  • 67
    • 84887252893 scopus 로고    scopus 로고
    • Influence of electron dose rate on electron counting images recorded with the K2 camera
    • Li, X., Zheng, S. Q., Egami, K., Agard, D. A. & Cheng, Y. Influence of electron dose rate on electron counting images recorded with the K2 camera. J. Struct. Biol. 184, 251-260 (2013).
    • (2013) J. Struct. Biol , vol.184 , pp. 251-260
    • Li, X.1    Zheng, S.Q.2    Egami, K.3    Agard, D.A.4    Cheng, Y.5
  • 68
    • 0038441501 scopus 로고    scopus 로고
    • Accurate determination of local defocus and specimen tilt in electron microscopy
    • Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334-347 (2003).
    • (2003) J. Struct. Biol , vol.142 , pp. 334-347
    • Mindell, J.A.1    Grigorieff, N.2
  • 69
    • 84946488108 scopus 로고    scopus 로고
    • CTFFIND4: Fast and accurate defocus estimation from electron micrographs
    • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216-221 (2015).
    • (2015) J. Struct. Biol , vol.192 , pp. 216-221
    • Rohou, A.1    Grigorieff, N.2
  • 70
    • 33845332754 scopus 로고    scopus 로고
    • EMAN2: An extensible image processing suite for electron microscopy
    • Tang, G. et al. EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38-46 (2007).
    • (2007) J. Struct. Biol , vol.157 , pp. 38-46
    • Tang, G.1
  • 71
    • 84922727036 scopus 로고    scopus 로고
    • Semi-Automated selection of cryo-EM particles in RELION-1.3
    • Scheres, S. H. Semi-Automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114-122 (2015).
    • (2015) J. Struct. Biol , vol.189 , pp. 114-122
    • Scheres, S.H.1
  • 72
    • 84920942671 scopus 로고    scopus 로고
    • Beam-induced motion correction for sub-megadalton cryo-EM particles
    • Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. Elife 3, e03665 (2014).
    • (2014) Elife , vol.3 , pp. e03665
    • Scheres, S.H.1
  • 73
    • 84887242753 scopus 로고    scopus 로고
    • One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions
    • Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226-236 (2013).
    • (2013) J. Struct. Biol , vol.184 , pp. 226-236
    • Cardone, G.1    Heymann, J.B.2    Steven, A.C.3
  • 75
    • 84863540819 scopus 로고    scopus 로고
    • Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation
    • Sun, M. et al. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res. 22, 1350-1359 (2012).
    • (2012) Genome Res , vol.22 , pp. 1350-1359
    • Sun, M.1
  • 76
    • 50649118115 scopus 로고    scopus 로고
    • High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay
    • Dolken, L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959-1972 (2008).
    • (2008) RNA , vol.14 , pp. 1959-1972
    • Dolken, L.1
  • 77
    • 84871809302 scopus 로고    scopus 로고
    • STAR ultrafast universal RNA-seq aligner
    • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 15-21
    • Dobin, A.1
  • 78
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-A Python framework to work with high-Throughput sequencing data
    • Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-Throughput sequencing data. Bioinformatics 31, 166-169 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 79
    • 85091232873 scopus 로고    scopus 로고
    • RNA-Seq workflow: Gene-level exploratory analysis and differential expression
    • Love, M. I., Anders, S., Kim, V. & Huber, W. RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Res 4, 1070 (2015).
    • (2015) F1000Res , vol.4 , pp. 1070
    • Love, M.I.1    Anders, S.2    Kim, V.3    Huber, W.4
  • 80
    • 0034724953 scopus 로고    scopus 로고
    • Architecture of RNA polymerase II and implications for the transcription mechanism
    • Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640-649 (2000).
    • (2000) Science , vol.288 , pp. 640-649
    • Cramer, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.