-
1
-
-
0030802398
-
Identification of RTF1, a novel gene important for TATA site selection by TATA box-binding protein in Saccharomyces cerevisiae
-
Stolinski LA, Eisenmann DM, Arndt KM. 1997. Identification of RTF1, a novel gene important for TATA site selection by TATA box-binding protein in Saccharomyces cerevisiae. Mol Cell Biol 17:4490-4500.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 4490-4500
-
-
Stolinski, L.A.1
Eisenmann, D.M.2
Arndt, K.M.3
-
2
-
-
0036123253
-
Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex
-
Mueller CL, Jaehning JA. 2002. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol Cell Biol 22:1971-1980. http://dx.doi.org/10.1128/MCB.22.7.1971-1980.2002.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 1971-1980
-
-
Mueller, C.L.1
Jaehning, J.A.2
-
3
-
-
0031027465
-
Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbpcontaining holoenzyme
-
Shi X, Chang M, Wolf AJ, Chang CH, Frazer-Abel AA, Wade PA, Burton ZF, Jaehning JA. 1997. Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbpcontaining holoenzyme. Mol Cell Biol 17:1160-1169.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 1160-1169
-
-
Shi, X.1
Chang, M.2
Wolf, A.J.3
Chang, C.H.4
Frazer-Abel, A.A.5
Wade, P.A.6
Burton, Z.F.7
Jaehning, J.A.8
-
4
-
-
0030045412
-
Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription
-
Shi X, Finkelstein A, Wolf AJ, Wade PA, Burton ZF, Jaehning JA. 1996. Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription. Mol Cell Biol 16:669-679.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 669-679
-
-
Shi, X.1
Finkelstein, A.2
Wolf, A.J.3
Wade, P.A.4
Burton, Z.F.5
Jaehning, J.A.6
-
5
-
-
0037007217
-
The Paf1 complex physically and functionally associates with transcription elongation factors in vivo
-
Squazzo SL, Costa PJ, Lindstrom DL, Kumer KE, Simic R, Jennings JL, Link AJ, Arndt KM, Hartzog GA. 2002. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J 21:1764-1774. http://dx.doi.org/10.1093/emboj/21.7.1764.
-
(2002)
EMBO J
, vol.21
, pp. 1764-1774
-
-
Squazzo, S.L.1
Costa, P.J.2
Lindstrom, D.L.3
Kumer, K.E.4
Simic, R.5
Jennings, J.L.6
Link, A.J.7
Arndt, K.M.8
Hartzog, G.A.9
-
6
-
-
0037524702
-
The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation
-
Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, Dean K, Ryan OW, Golshani A, Johnston M, Greenblatt JF, Shilatifard A. 2003. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 11:721-729. http://dx.doi.org/10.1016/S1097-2765(03)00091-1.
-
(2003)
Mol Cell
, vol.11
, pp. 721-729
-
-
Krogan, N.J.1
Dover, J.2
Wood, A.3
Schneider, J.4
Heidt, J.5
Boateng, M.A.6
Dean, K.7
Ryan, O.W.8
Golshani, A.9
Johnston, M.10
Greenblatt, J.F.11
Shilatifard, A.12
-
7
-
-
0141483281
-
The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B
-
Ng HH, Dole S, Struhl K. 2003. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278:33625-33628. http://dx.doi.org/10.1074/jbc. C300270200.
-
(2003)
J Biol Chem
, vol.278
, pp. 33625-33628
-
-
Ng, H.H.1
Dole, S.2
Struhl, K.3
-
8
-
-
0344022572
-
Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
-
Ng HH, Robert F, Young RA, Struhl K. 2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709-719. http://dx.doi.org/10.1016/S1097-2765(03)00092-3.
-
(2003)
Mol Cell
, vol.11
, pp. 709-719
-
-
Ng, H.H.1
Robert, F.2
Young, R.A.3
Struhl, K.4
-
9
-
-
84863561640
-
Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast
-
Piro AS, Mayekar MK, Warner MH, Davis CP, Arndt KM. 2012. Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast. Proc Natl Acad SciUSA 109:10837-10842. http://dx.doi.org/10.1073/pnas.1116994109.
-
(2012)
Proc Natl Acad SciUSA
, vol.109
, pp. 10837-10842
-
-
Piro, A.S.1
Mayekar, M.K.2
Warner, M.H.3
Davis, C.P.4
Arndt, K.M.5
-
10
-
-
0042818412
-
The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
-
Wood A, Schneider J, Dover J, Johnston M, Shilatifard A. 2003. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem 278:34739-34742. http://dx.doi.org/10.1074/jbc. C300269200.
-
(2003)
J Biol Chem
, vol.278
, pp. 34739-34742
-
-
Wood, A.1
Schneider, J.2
Dover, J.3
Johnston, M.4
Shilatifard, A.5
-
11
-
-
84905252394
-
Catalysis-dependent stabilization of Bre1 fine-tunes histone H2B ubiquitylation to regulate gene transcription
-
Wozniak GG, Strahl BD. 2014. Catalysis-dependent stabilization of Bre1 fine-tunes histone H2B ubiquitylation to regulate gene transcription. Genes Dev 28:1647-1652. http://dx.doi.org/10.1101/gad.243121.114.
-
(2014)
Genes Dev
, vol.28
, pp. 1647-1652
-
-
Wozniak, G.G.1
Strahl, B.D.2
-
12
-
-
11844297340
-
Histone H2B ubiquitylation is associated with elongating RNA polymerase II
-
Xiao T, Kao CF, Krogan NJ, Sun ZW, Greenblatt JF, Osley MA, Strahl BD. 2005. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol Cell Biol 25:637-651. http://dx.doi.org/10.1128/MCB.25.2.637-651.2005.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 637-651
-
-
Xiao, T.1
Kao, C.F.2
Krogan, N.J.3
Sun, Z.W.4
Greenblatt, J.F.5
Osley, M.A.6
Strahl, B.D.7
-
13
-
-
72549083757
-
DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation
-
Chen Y, Yamaguchi Y, Tsugeno Y, Yamamoto J, Yamada T, Nakamura M, Hisatake K, Handa H. 2009. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev 23:2765-2777. http://dx.doi.org/10.1101/gad.1834709.
-
(2009)
Genes Dev
, vol.23
, pp. 2765-2777
-
-
Chen, Y.1
Yamaguchi, Y.2
Tsugeno, Y.3
Yamamoto, J.4
Yamada, T.5
Nakamura, M.6
Hisatake, K.7
Handa, H.8
-
14
-
-
76749090562
-
The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS
-
Kim J, Guermah M, Roeder RG. 2010. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 140:491-503. http://dx.doi.org/10.1016/j.cell.2009.12.050.
-
(2010)
Cell
, vol.140
, pp. 491-503
-
-
Kim, J.1
Guermah, M.2
Roeder, R.G.3
-
15
-
-
33646691283
-
Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
-
Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D. 2006. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125:703-717. http://dx.doi.org/10.1016/j.cell.2006.04.029.
-
(2006)
Cell
, vol.125
, pp. 703-717
-
-
Pavri, R.1
Zhu, B.2
Li, G.3
Trojer, P.4
Mandal, S.5
Shilatifard, A.6
Reinberg, D.7
-
16
-
-
1242298517
-
Molecular evidence indicating that the yeast PAF complex is required for transcription elongation
-
Rondon AG, Gallardo M, García-Rubio M, Aguilera A. 2004. Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Rep 5:47-53. http://dx.doi.org/10.1038/sj.embor.7400045.
-
(2004)
EMBO Rep
, vol.5
, pp. 47-53
-
-
Rondon, A.G.1
Gallardo, M.2
García-Rubio, M.3
Aguilera, A.4
-
17
-
-
84865067401
-
The roles of the Paf1 complex and associated histone modifications in regulating gene expression
-
Crisucci EM, Arndt KM. 2011. The roles of the Paf1 complex and associated histone modifications in regulating gene expression. Genet Res Int 2011:707641.
-
(2011)
Genet Res Int
, vol.2011
, pp. 707641
-
-
Crisucci, E.M.1
Arndt, K.M.2
-
18
-
-
77953277032
-
The Paf1 complex: platform or player in RNA polymerase II transcription?
-
Jaehning JA. 2010. The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim Biophys Acta 1799:379-388. http://dx.doi.org/10.1016/j.bbagrm.2010.01.001.
-
(2010)
Biochim Biophys Acta
, vol.1799
, pp. 379-388
-
-
Jaehning, J.A.1
-
19
-
-
12544260507
-
Interaction between transcription elongation factors and mRNA 3=-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus
-
Kaplan CD, Holland MJ, Winston F. 2005. Interaction between transcription elongation factors and mRNA 3=-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J Biol Chem 280:913-922. http://dx.doi.org/10.1074/jbc. M411108200.
-
(2005)
J Biol Chem
, vol.280
, pp. 913-922
-
-
Kaplan, C.D.1
Holland, M.J.2
Winston, F.3
-
20
-
-
47049105670
-
Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II
-
Nordick K, Hoffman MG, Betz JL, Jaehning JA. 2008. Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II. Eukaryot Cell 7:1158-1167. http://dx.doi.org/10.1128/EC.00434-07.
-
(2008)
Eukaryot Cell
, vol.7
, pp. 1158-1167
-
-
Nordick, K.1
Hoffman, M.G.2
Betz, J.L.3
Jaehning, J.A.4
-
21
-
-
26944435516
-
A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets
-
Penheiter KL, Washburn TM, Porter SE, Hoffman MG, Jaehning JA. 2005. A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets. Mol Cell 20:213-223. http://dx.doi.org/10.1016/j.molcel.2005.08.023.
-
(2005)
Mol Cell
, vol.20
, pp. 213-223
-
-
Penheiter, K.L.1
Washburn, T.M.2
Porter, S.E.3
Hoffman, M.G.4
Jaehning, J.A.5
-
22
-
-
58849148029
-
The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3= mRNA processing factors
-
Rozenblatt-Rosen O, Nagaike T, Francis JM, Kaneko S, Glatt KA, Hughes CM, LaFramboise T, Manley JL, Meyerson M. 2009. The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3= mRNA processing factors. Proc Natl Acad Sci U S A 106:755-760. http://dx.doi.org/10.1073/pnas.0812023106.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 755-760
-
-
Rozenblatt-Rosen, O.1
Nagaike, T.2
Francis, J.M.3
Kaneko, S.4
Glatt, K.A.5
Hughes, C.M.6
LaFramboise, T.7
Manley, J.L.8
Meyerson, M.9
-
23
-
-
26944479278
-
A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3= end formation
-
Sheldon KE, Mauger DM, Arndt KM. 2005. A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3= end formation. Mol Cell 20:225-236. http://dx.doi.org/10.1016/j.molcel.2005.08.026.
-
(2005)
Mol Cell
, vol.20
, pp. 225-236
-
-
Sheldon, K.E.1
Mauger, D.M.2
Arndt, K.M.3
-
24
-
-
84871889392
-
Effects of the Paf1 complex and histone modifications on snoRNA 3=-end formation reveal broad and locus-specific regulation
-
Tomson BN, Crisucci EM, Heisler LE, Gebbia M, Nislow C, Arndt KM. 2013. Effects of the Paf1 complex and histone modifications on snoRNA 3=-end formation reveal broad and locus-specific regulation. Mol Cell Biol 33:170-182. http://dx.doi.org/10.1128/MCB.01233-12.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 170-182
-
-
Tomson, B.N.1
Crisucci, E.M.2
Heisler, L.E.3
Gebbia, M.4
Nislow, C.5
Arndt, K.M.6
-
25
-
-
79958184449
-
Identification of a role for histone H2B ubiquitylation in noncoding RNA 3=-end formation through mutational analysis of Rtf1 in Saccharomyces cerevisiae
-
Tomson BN, Davis CP, Warner MH, Arndt KM. 2011. Identification of a role for histone H2B ubiquitylation in noncoding RNA 3=-end formation through mutational analysis of Rtf1 in Saccharomyces cerevisiae. Genetics 188:273-289. http://dx.doi.org/10.1534/genetics.111.128645.
-
(2011)
Genetics
, vol.188
, pp. 273-289
-
-
Tomson, B.N.1
Davis, C.P.2
Warner, M.H.3
Arndt, K.M.4
-
26
-
-
84890411730
-
Structural insights into Paf1 complex assembly and histone binding
-
Chu X, Qin X, Xu H, Li L, Wang Z, Li F, Xie X, Zhou H, Shen Y, Long J. 2013. Structural insights into Paf1 complex assembly and histone binding. Nucleic Acids Res 41:10619-10629. http://dx.doi.org/10.1093/nar/gkt819.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 10619-10629
-
-
Chu, X.1
Qin, X.2
Xu, H.3
Li, L.4
Wang, Z.5
Li, F.6
Xie, X.7
Zhou, H.8
Shen, Y.9
Long, J.10
-
27
-
-
23044457643
-
The human PAF complex coordinates transcription with events downstream of RNA synthesis
-
Zhu B, Mandal SS, Pham AD, Zheng Y, Erdjument-Bromage H, Batra SK, Tempst P, Reinberg D. 2005. The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev 19: 1668-1673. http://dx.doi.org/10.1101/gad.1292105.
-
(2005)
Genes Dev
, vol.19
, pp. 1668-1673
-
-
Zhu, B.1
Mandal, S.S.2
Pham, A.D.3
Zheng, Y.4
Erdjument-Bromage, H.5
Batra, S.K.6
Tempst, P.7
Reinberg, D.8
-
28
-
-
33645219388
-
Drosophila Paf1 modulates chromatin structure at actively transcribed genes
-
Adelman K, Lis JT. 2006. Drosophila Paf1 modulates chromatin structure at actively transcribed genes. Mol Cell Biol 26:250-260. http://dx.doi.org/10.1128/MCB.26.1.250-260.2006.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 250-260
-
-
Adelman, K.1
Lis, J.T.2
-
29
-
-
79953759778
-
The PAF1 complex differentially regulates cardiomyocyte specification
-
Langenbacher AD, Nguyen CT, Cavanaugh AM, Huang J, Lu F, Chen JN. 2011. The PAF1 complex differentially regulates cardiomyocyte specification. Dev Biol 353:19-28. http://dx.doi.org/10.1016/j.ydbio.2011.02.011.
-
(2011)
Dev Biol
, vol.353
, pp. 19-28
-
-
Langenbacher, A.D.1
Nguyen, C.T.2
Cavanaugh, A.M.3
Huang, J.4
Lu, F.5
Chen, J.N.6
-
30
-
-
84892766966
-
The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast
-
Mbogning J, Nagy S, Pagé V, Schwer B, Shuman S, Fisher RP, Tanny JC. 2013. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast. PLoS Genet 9:e1004029. http://dx.doi.org/10.1371/journal.pgen.1004029.
-
(2013)
PLoS Genet
, vol.9
, pp. e1004029
-
-
Mbogning, J.1
Nagy, S.2
Pagé, V.3
Schwer, B.4
Shuman, S.5
Fisher, R.P.6
Tanny, J.C.7
-
31
-
-
33747072028
-
Drosophila Rtf1 functions in histone methylation, gene expression, and Notch signaling
-
Tenney K, Shilatifard A. 2006. Drosophila Rtf1 functions in histone methylation, gene expression, and Notch signaling. Proc Natl Acad Sci U S A 103:11970-11974. http://dx.doi.org/10.1073/pnas.0603620103.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 11970-11974
-
-
Tenney, K.1
Shilatifard, A.2
-
32
-
-
35548950642
-
Paf1 complex homologues are required for Notch-regulated transcription during somite segmentation
-
Akanuma T, Koshida S, Kawamura A, Kishimoto Y, Takada S. 2007. Paf1 complex homologues are required for Notch-regulated transcription during somite segmentation. EMBO Rep 8:858-863. http://dx.doi.org/10.1038/sj.embor.7401045.
-
(2007)
EMBO Rep
, vol.8
, pp. 858-863
-
-
Akanuma, T.1
Koshida, S.2
Kawamura, A.3
Kishimoto, Y.4
Takada, S.5
-
33
-
-
84899937257
-
The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans
-
Kubota Y, Tsuyama K, Takabayashi Y, Haruta N, Maruyama R, Iida N, Sugimoto A. 2014. The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans. Dev Biol 391:43-53. http://dx.doi.org/10.1016/j.ydbio.2014.04.002.
-
(2014)
Dev Biol
, vol.391
, pp. 43-53
-
-
Kubota, Y.1
Tsuyama, K.2
Takabayashi, Y.3
Haruta, N.4
Maruyama, R.5
Iida, N.6
Sugimoto, A.7
-
34
-
-
34548221891
-
Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification
-
Warner MH, Roinick KL, Arndt KM. 2007. Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol Cell Biol 27:6103-6115. http://dx.doi.org/10.1128/MCB.00772-07.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6103-6115
-
-
Warner, M.H.1
Roinick, K.L.2
Arndt, K.M.3
-
35
-
-
84886402728
-
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin
-
Wier AD, Mayekar MK, Heroux A, Arndt KM, Vandemark AP. 2013. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc Natl Acad Sci U S A 110:17290-17295. http://dx.doi.org/10.1073/pnas.1314754110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 17290-17295
-
-
Wier, A.D.1
Mayekar, M.K.2
Heroux, A.3
Arndt, K.M.4
Vandemark, A.P.5
-
36
-
-
37549056194
-
Structure and DNA binding of the human Rtf1 Plus3 domain
-
de Jong RN, Truffault V, Diercks T, Ab E, Daniels MA, Kaptein R, Folkers GE. 2008. Structure and DNA binding of the human Rtf1 Plus3 domain. Structure 16:149-159. http://dx.doi.org/10.1016/j.str.2007.10.018.
-
(2008)
Structure
, vol.16
, pp. 149-159
-
-
de Jong, R.N.1
Truffault, V.2
Diercks, T.3
Ab, E.4
Daniels, M.A.5
Kaptein, R.6
Folkers, G.E.7
-
37
-
-
68849086180
-
Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex
-
Liu Y, Warfield L, Zhang C, Luo J, Allen J, Lang WH, Ranish J, Shokat KM, Hahn S. 2009. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29:4852-4863. http://dx.doi.org/10.1128/MCB.00609-09.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 4852-4863
-
-
Liu, Y.1
Warfield, L.2
Zhang, C.3
Luo, J.4
Allen, J.5
Lang, W.H.6
Ranish, J.7
Shokat, K.M.8
Hahn, S.9
-
38
-
-
84881276041
-
The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex
-
Mayekar MK, Gardner RG, Arndt KM. 2013. The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mol Cell Biol 33:3259-3273. http://dx.doi.org/10.1128/MCB.00270-13.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 3259-3273
-
-
Mayekar, M.K.1
Gardner, R.G.2
Arndt, K.M.3
-
39
-
-
66349122952
-
Control of transcriptional elongation.
-
cotranscriptional histone modification by the yeast BUR kinase substrate Spt5 USA
-
Zhou K, Kuo WH, Fillingham J, Greenblatt JF. 2009. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad SciUSA106:6956-6961. http://dx.doi.org/10.1073/pnas.0806302106.
-
(2009)
Proc Natl Acad Sci.
, vol.106
, pp. 6956-6961
-
-
Zhou, K.1
Kuo, W.H.2
Fillingham, J.3
Greenblatt, J.F.4
-
40
-
-
0000337142
-
Modulation of RNA Polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I
-
Lee JM, Greenleaf AL. 1997. Modulation of RNA Polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I. J Biol Chem 272:10990-10993. http://dx.doi.org/10.1074/jbc.272.17.10990.
-
(1997)
J Biol Chem
, vol.272
, pp. 10990-10993
-
-
Lee, J.M.1
Greenleaf, A.L.2
-
41
-
-
0033515521
-
NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
-
Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H. 1999. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41-51. http://dx.doi.org/10.1016/S0092-8674(00)80713-8.
-
(1999)
Cell
, vol.97
, pp. 41-51
-
-
Yamaguchi, Y.1
Takagi, T.2
Wada, T.3
Yano, K.4
Furuya, A.5
Sugimoto, S.6
Hasegawa, J.7
Handa, H.8
-
42
-
-
14444275279
-
DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs
-
Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H. 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12:343-356. http://dx.doi.org/10.1101/gad.12.3.343.
-
(1998)
Genes Dev
, vol.12
, pp. 343-356
-
-
Wada, T.1
Takagi, T.2
Yamaguchi, Y.3
Ferdous, A.4
Imai, T.5
Hirose, S.6
Sugimoto, S.7
Yano, K.8
Hartzog, G.A.9
Winston, F.10
Buratowski, S.11
Handa, H.12
-
43
-
-
34247552158
-
NELF interacts with CBC and participates in 3= end processing of replication-dependent histone mRNAs
-
Narita T, Yung TM, Yamamoto J, Tsuboi Y, Tanabe H, Tanaka K, Yamaguchi Y, Handa H. 2007. NELF interacts with CBC and participates in 3= end processing of replication-dependent histone mRNAs. Mol Cell 26:349-365. http://dx.doi.org/10.1016/j.molcel.2007.04.011.
-
(2007)
Mol Cell
, vol.26
, pp. 349-365
-
-
Narita, T.1
Yung, T.M.2
Yamamoto, J.3
Tsuboi, Y.4
Tanabe, H.5
Tanaka, K.6
Yamaguchi, Y.7
Handa, H.8
-
44
-
-
30744449491
-
P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation
-
Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H. 2006. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell 21:227-237. http://dx.doi.org/10.1016/j.molcel.2005.11.024.
-
(2006)
Mol Cell
, vol.21
, pp. 227-237
-
-
Yamada, T.1
Yamaguchi, Y.2
Inukai, N.3
Okamoto, S.4
Mura, T.5
Handa, H.6
-
45
-
-
61449172037
-
Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources
-
Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4:44-57. http://dx.doi.org/10.1038/nprot.2008.211.
-
(2009)
Nat Protoc
, vol.4
, pp. 44-57
-
-
Huang, D.W.1
Sherman, B.T.2
Lempicki, R.A.3
-
46
-
-
84903592021
-
DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes
-
Yamamoto J, Hagiwara Y, Chiba K, Isobe T, Narita T, Handa H, Yamaguchi Y. 2014. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat Commun 5:4263. http://dx.doi.org/10.1038/ncomms5263.
-
(2014)
Nat Commun
, vol.5
, pp. 4263
-
-
Yamamoto, J.1
Hagiwara, Y.2
Chiba, K.3
Isobe, T.4
Narita, T.5
Handa, H.6
Yamaguchi, Y.7
-
47
-
-
84859514630
-
Cdc73 subunit of Paf1 complex contains C-terminal Ras-like domain that promotes association of Paf1 complex with chromatin
-
Amrich CG, Davis CP, Rogal WP, Shirra MK, Heroux A, Gardner RG, Arndt KM, VanDemark AP. 2012. Cdc73 subunit of Paf1 complex contains C-terminal Ras-like domain that promotes association of Paf1 complex with chromatin. J Biol Chem 287:10863-10875. http://dx.doi.org/10.1074/jbc. M111.325647.
-
(2012)
J Biol Chem
, vol.287
, pp. 10863-10875
-
-
Amrich, C.G.1
Davis, C.P.2
Rogal, W.P.3
Shirra, M.K.4
Heroux, A.5
Gardner, R.G.6
Arndt, K.M.7
VanDemark, A.P.8
-
48
-
-
84891023280
-
Linker histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation
-
Kim K, Lee B, Kim J, Choi J, Kim J-M, Xiong Y, Roeder RG, An W. 2013. Linker histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation. Cell Rep 5:1690-1703. http://dx.doi.org/10.1016/j.celrep.2013.11.038.
-
(2013)
Cell Rep
, vol.5
, pp. 1690-1703
-
-
Kim, K.1
Lee, B.2
Kim, J.3
Choi, J.4
Kim, J-M.5
Xiong, Y.6
Roeder, R.G.7
An, W.8
-
49
-
-
0036787862
-
RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach
-
Krogan NJ, Buratowski S, Greenblatt JF. 2002. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22:6979-6992. http://dx.doi.org/10.1128/MCB.22.20.6979-6992.2002.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 6979-6992
-
-
Krogan, N.J.1
Buratowski, S.2
Greenblatt, J.F.3
-
50
-
-
84883208951
-
Cks1 enhances transcription efficiency at the GAL1 locus by linking the Paf1 complex to the 19S proteasome
-
Pan YR, Sun M, Wohlschlegel J, Reed SI. 2013. Cks1 enhances transcription efficiency at the GAL1 locus by linking the Paf1 complex to the 19S proteasome. Eukaryot Cell 12:1192-1201. http://dx.doi.org/10.1128/EC.00151-13.
-
(2013)
Eukaryot Cell
, vol.12
, pp. 1192-1201
-
-
Pan, Y.R.1
Sun, M.2
Wohlschlegel, J.3
Reed, S.I.4
-
51
-
-
0345698603
-
Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes
-
Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, Hartzog GA, Arndt KM. 2003. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J 22:1846-1856. http://dx.doi.org/10.1093/emboj/cdg179.
-
(2003)
EMBO J
, vol.22
, pp. 1846-1856
-
-
Simic, R.1
Lindstrom, D.L.2
Tran, H.G.3
Roinick, K.L.4
Costa, P.J.5
Johnson, A.D.6
Hartzog, G.A.7
Arndt, K.M.8
-
52
-
-
84941080809
-
Cyclebase 3.0: a multiorganism database on cell-cycle regulation and phenotypes
-
Santos A, Wernersson R, Jensen LJ. 2015. Cyclebase 3.0: a multiorganism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 43:D1140-D1144. http://dx.doi.org/10.1093/nar/gku1092.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D1140-D1144
-
-
Santos, A.1
Wernersson, R.2
Jensen, L.J.3
-
53
-
-
53549112774
-
The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression
-
Shema E, Tirosh I, Aylon Y, Huang J, Ye C, Moskovits N, Raver- Shapira N, Minsky N, Pirngruber J, Tarcic G, Hublarova P, Moyal L, Gana-Weisz M, Shiloh Y, Yarden Y, Johnsen SA, Vojtesek B, Berger SL, Oren M. 2008. The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev 22:2664-2676. http://dx.doi.org/10.1101/gad.1703008.
-
(2008)
Genes Dev
, vol.22
, pp. 2664-2676
-
-
Shema, E.1
Tirosh, I.2
Aylon, Y.3
Huang, J.4
Ye, C.5
Moskovits, N.6
Raver-Shapira, N.7
Minsky, N.8
Pirngruber, J.9
Tarcic, G.10
Hublarova, P.11
Moyal, L.12
Gana-Weisz, M.13
Shiloh, Y.14
Yarden, Y.15
Johnsen, S.A.16
Vojtesek, B.17
Berger, S.L.18
Oren, M.19
-
54
-
-
0037144498
-
Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation
-
Chin L-S, Vavalle JP, Li L. 2002. Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 277:35071-35079. http://dx.doi.org/10.1074/jbc. M203300200.
-
(2002)
J Biol Chem
, vol.277
, pp. 35071-35079
-
-
Chin, L-S.1
Vavalle, J.P.2
Li, L.3
-
55
-
-
84906794015
-
Ring finger protein20 regulates hepatic lipid metabolism through protein kinase Adependent sterol regulatory element binding protein1c degradation
-
Lee JH, Lee GY, Jang H, Choe SS, Koo S-H, Kim JB. 2014. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase Adependent sterol regulatory element binding protein1c degradation. Hepatology 60:844-857. http://dx.doi.org/10.1002/hep.27011.
-
(2014)
Hepatology
, vol.60
, pp. 844-857
-
-
Lee, J.H.1
Lee, G.Y.2
Jang, H.3
Choe, S.S.4
Koo, S-H.5
Kim, J.B.6
-
56
-
-
64049118773
-
Human BRE1 is an E3 ubiquitin ligase for Ebp1 tumor suppressor
-
Liu Z, Oh S-M, Okada M, Liu X, Cheng D, Peng J, Brat DJ, Sun S-Y, Zhou W, Gu W, Ye K. 2009. Human BRE1 is an E3 ubiquitin ligase for Ebp1 tumor suppressor. Mol Biol Cell 20:757-768. http://dx.doi.org/10.1091/mbc. E08-09-0983.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 757-768
-
-
Liu, Z.1
Oh, S-M.2
Okada, M.3
Liu, X.4
Cheng, D.5
Peng, J.6
Brat, D.J.7
Sun, S-Y.8
Zhou, W.9
Gu, W.10
Ye, K.11
-
57
-
-
84893312061
-
RNF20 promotes the polyubiquitination and proteasomedependent degradation of AP-2α protein
-
Ren P, Sheng Z, Wang Y, Yi X, Zhou Q, Zhou J, Xiang S, Hu X, Zhang J. 2014. RNF20 promotes the polyubiquitination and proteasomedependent degradation of AP-2α protein. Acta Biochim Biophys Sin 46: 136-140. http://dx.doi.org/10.1093/abbs/gmt136.
-
(2014)
Acta Biochim Biophys Sin
, vol.46
, pp. 136-140
-
-
Ren, P.1
Sheng, Z.2
Wang, Y.3
Yi, X.4
Zhou, Q.5
Zhou, J.6
Xiang, S.7
Hu, X.8
Zhang, J.9
|