-
1
-
-
84865067401
-
The roles of the Paf1 complex and associated histone modifications in regulating gene expression
-
Crisucci EM, Arndt KM (2011) The roles of the Paf1 complex and associated histone modifications in regulating gene expression. Genet Res Int 2011:2011.
-
(2011)
Genet Res Int
, vol.2011
, pp. 2011
-
-
Crisucci, E.M.1
Arndt, K.M.2
-
2
-
-
0030221376
-
A novel collection of accessory factors associated with yeast RNA polymerase II
-
Wade PA, et al. (1996) A novel collection of accessory factors associated with yeast RNA polymerase II. Protein Expr Purif 8(1):85-90.
-
(1996)
Protein Expr Purif
, vol.8
, Issue.1
, pp. 85-90
-
-
Wade, P.A.1
-
3
-
-
0036787862
-
RNA polymerase II elongation factors of Saccharomyces cerevisiae: A targeted proteomics approach
-
Krogan NJ, et al. (2002) RNA polymerase II elongation factors of Saccharomyces cerevisiae: A targeted proteomics approach. Mol Cell Biol 22(20):6979-6992.
-
(2002)
Mol Cell Biol
, vol.22
, Issue.20
, pp. 6979-6992
-
-
Krogan, N.J.1
-
4
-
-
0036123253
-
Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex
-
Mueller CL, Jaehning JA (2002) Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol Cell Biol 22(7):1971-1980.
-
(2002)
Mol Cell Biol
, vol.22
, Issue.7
, pp. 1971-1980
-
-
Mueller, C.L.1
Jaehning, J.A.2
-
5
-
-
0037007217
-
The Paf1 complex physically and functionally associates with transcription elongation factors in vivo
-
Squazzo SL, et al. (2002) The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J 21(7):1764-1774.
-
(2002)
EMBO J
, vol.21
, Issue.7
, pp. 1764-1774
-
-
Squazzo, S.L.1
-
6
-
-
23044457643
-
The human PAF complex coordinates transcription with events downstream of RNA synthesis
-
Zhu B, et al. (2005) The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev 19(14):1668-1673.
-
(2005)
Genes Dev
, vol.19
, Issue.14
, pp. 1668-1673
-
-
Zhu, B.1
-
7
-
-
0000577868
-
The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex
-
Anderson JS, Parker RP (1998) The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J 17(5):1497-1506.
-
(1998)
EMBO J
, vol.17
, Issue.5
, pp. 1497-1506
-
-
Anderson, J.S.1
Parker, R.P.2
-
8
-
-
1542290655
-
Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes
-
Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S (2004) Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J 23(2):354-364.
-
(2004)
EMBO J
, vol.23
, Issue.2
, pp. 354-364
-
-
Kim, M.1
Ahn, S.H.2
Krogan, N.J.3
Greenblatt, J.F.4
Buratowski, S.5
-
9
-
-
77957766550
-
Uniform transitions of the general RNA polymerase II transcription complex
-
Mayer A, et al. (2010) Uniform transitions of the general RNA polymerase II transcription complex. Nat Struct Mol Biol 17(10):1272-1278.
-
(2010)
Nat Struct Mol Biol
, vol.17
, Issue.10
, pp. 1272-1278
-
-
Mayer, A.1
-
10
-
-
36248965214
-
Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes
-
Chu Y, Simic R, Warner MH, Arndt KM, Prelich G (2007) Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J 26(22): 4646-4656.
-
(2007)
EMBO J
, vol.26
, Issue.22
, pp. 4646-4656
-
-
Chu, Y.1
Simic, R.2
Warner, M.H.3
Arndt, K.M.4
Prelich, G.5
-
11
-
-
0037524702
-
The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: Linking transcriptional elongation to histone methylation
-
Krogan NJ, et al. (2003) The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 11(3):721-729.
-
(2003)
Mol Cell
, vol.11
, Issue.3
, pp. 721-729
-
-
Krogan, N.J.1
-
12
-
-
0141483281
-
The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B
-
Ng HH, Dole S, Struhl K (2003) The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278(36):33625-33628.
-
(2003)
J Biol Chem
, vol.278
, Issue.36
, pp. 33625-33628
-
-
Ng, H.H.1
Dole, S.2
Struhl, K.3
-
13
-
-
0042818412
-
The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
-
Wood A, Schneider J, Dover J, Johnston M, Shilatifard A (2003) The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem 278(37):34739-34742.
-
(2003)
J Biol Chem
, vol.278
, Issue.37
, pp. 34739-34742
-
-
Wood, A.1
Schneider, J.2
Dover, J.3
Johnston, M.4
Shilatifard, A.5
-
14
-
-
2442568473
-
The Paf1 complex has functions independent of actively transcribing RNA polymerase II
-
Mueller CL, Porter SE, Hoffman MG, Jaehning JA (2004) The Paf1 complex has functions independent of actively transcribing RNA polymerase II. Mol Cell 14(4):447-456.
-
(2004)
Mol Cell
, vol.14
, Issue.4
, pp. 447-456
-
-
Mueller, C.L.1
Porter, S.E.2
Hoffman, M.G.3
Jaehning, J.A.4
-
15
-
-
47049105670
-
Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II
-
Nordick K, Hoffman MG, Betz JL, Jaehning JA (2008) Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II. Eukaryot Cell 7(7):1158-1167.
-
(2008)
Eukaryot Cell
, vol.7
, Issue.7
, pp. 1158-1167
-
-
Nordick, K.1
Hoffman, M.G.2
Betz, J.L.3
Jaehning, J.A.4
-
16
-
-
58849148029
-
The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors
-
Rozenblatt-Rosen O, et al. (2009) The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors. Proc Natl Acad Sci USA 106(3): 755-760.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.3
, pp. 755-760
-
-
Rozenblatt-Rosen, O.1
-
17
-
-
26944479278
-
A Requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3′ end formation
-
Sheldon KE, Mauger DM, Arndt KM (2005) A Requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3′ end formation. Mol Cell 20(2):225-236.
-
(2005)
Mol Cell
, vol.20
, Issue.2
, pp. 225-236
-
-
Sheldon, K.E.1
Mauger, D.M.2
Arndt, K.M.3
-
18
-
-
80053440056
-
The Paf1 complex represses SER3 transcription in Saccharomyces cerevisiae by facilitating intergenic transcriptiondependent nucleosome occupancy of the SER3 promoter
-
Pruneski JA, Hainer SJ, Petrov KO, Martens JA (2011) The Paf1 complex represses SER3 transcription in Saccharomyces cerevisiae by facilitating intergenic transcriptiondependent nucleosome occupancy of the SER3 promoter. Eukaryot Cell 10(10): 1283-1294.
-
(2011)
Eukaryot Cell
, vol.10
, Issue.10
, pp. 1283-1294
-
-
Pruneski, J.A.1
Hainer, S.J.2
Petrov, K.O.3
Martens, J.A.4
-
19
-
-
84881276041
-
The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex
-
Mayekar MK, Gardner RG, Arndt KM (2013) The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mol Cell Biol 33(16):3259-3273.
-
(2013)
Mol Cell Biol
, vol.33
, Issue.16
, pp. 3259-3273
-
-
Mayekar, M.K.1
Gardner, R.G.2
Arndt, K.M.3
-
20
-
-
84859514630
-
Cdc73 subunit of Paf1 complex contains C-terminal Ras-like domain that promotes association of Paf1 complex with chromatin
-
Amrich CG, et al. (2012) Cdc73 subunit of Paf1 complex contains C-terminal Ras-like domain that promotes association of Paf1 complex with chromatin. J Biol Chem 287(14):10863-10875.
-
(2012)
J Biol Chem
, vol.287
, Issue.14
, pp. 10863-10875
-
-
Amrich, C.G.1
-
21
-
-
84865212050
-
Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex
-
Qiu H, Hu C, Gaur NA, Hinnebusch AG (2012) Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J 31(16): 3494-3505.
-
(2012)
EMBO J
, vol.31
, Issue.16
, pp. 3494-3505
-
-
Qiu, H.1
Hu, C.2
Gaur, N.A.3
Hinnebusch, A.G.4
-
22
-
-
34548221891
-
Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification
-
Warner MH, Roinick KL, Arndt KM (2007) Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol Cell Biol 27(17):6103-6115.
-
(2007)
Mol Cell Biol
, vol.27
, Issue.17
, pp. 6103-6115
-
-
Warner, M.H.1
Roinick, K.L.2
Arndt, K.M.3
-
23
-
-
76749090562
-
The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS
-
Kim J, Guermah M, Roeder RG (2010) The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 140(4):491-503.
-
(2010)
Cell
, vol.140
, Issue.4
, pp. 491-503
-
-
Kim, J.1
Guermah, M.2
Roeder, R.G.3
-
24
-
-
72549083757
-
DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation
-
Chen Y, et al. (2009) DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev 23(23):2765-2777.
-
(2009)
Genes Dev
, vol.23
, Issue.23
, pp. 2765-2777
-
-
Chen, Y.1
-
25
-
-
79953779997
-
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
-
Martinez-Rucobo FW, Sainsbury S, Cheung AC, Cramer P (2011) Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J 30(7):1302-1310.
-
(2011)
EMBO J
, vol.30
, Issue.7
, pp. 1302-1310
-
-
Martinez-Rucobo, F.W.1
Sainsbury, S.2
Cheung, A.C.3
Cramer, P.4
-
26
-
-
84872424651
-
The Spt4-Spt5 complex: A multi-faceted regulator of transcription elongation
-
Hartzog GA, Fu J (2013) The Spt4-Spt5 complex: A multi-faceted regulator of transcription elongation. Biochim Biophys Acta 1829(1):105-115.
-
(2013)
Biochim Biophys Acta
, vol.1829
, Issue.1
, pp. 105-115
-
-
Hartzog, G.A.1
Fu, J.2
-
27
-
-
77955059733
-
Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif
-
Hirtreiter A, et al. (2010) Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res 38(12):4040-4051.
-
(2010)
Nucleic Acids Res
, vol.38
, Issue.12
, pp. 4040-4051
-
-
Hirtreiter, A.1
-
28
-
-
0037313160
-
Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins
-
Lindstrom DL, et al. (2003) Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol Cell Biol 23(4):1368-1378.
-
(2003)
Mol Cell Biol
, vol.23
, Issue.4
, pp. 1368-1378
-
-
Lindstrom, D.L.1
-
29
-
-
68849086180
-
Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex
-
Liu Y, et al. (2009) Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29(17): 4852-4863.
-
(2009)
Mol Cell Biol
, vol.29
, Issue.17
, pp. 4852-4863
-
-
Liu, Y.1
-
30
-
-
66349122952
-
Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5
-
Zhou K, Kuo WH, Fillingham J, Greenblatt JF (2009) Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad Sci USA 106(17):6956-6961.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.17
, pp. 6956-6961
-
-
Zhou, K.1
Kuo, W.H.2
Fillingham, J.3
Greenblatt, J.F.4
-
31
-
-
84859969858
-
The spt5 C-terminal region recruits yeast 3′ RNA cleavage factor I
-
Mayer A, et al. (2012) The spt5 C-terminal region recruits yeast 3′ RNA cleavage factor I. Mol Cell Biol 32(7):1321-1331.
-
(2012)
Mol Cell Biol
, vol.32
, Issue.7
, pp. 1321-1331
-
-
Mayer, A.1
-
32
-
-
77951993585
-
Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD
-
Schneider S, Pei Y, Shuman S, Schwer B (2010) Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Mol Cell Biol 30(10): 2353-2364.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.10
, pp. 2353-2364
-
-
Schneider, S.1
Pei, Y.2
Shuman, S.3
Schwer, B.4
-
33
-
-
0342748478
-
Domains in the SPT5 protein that modulate its transcriptional regulatory properties
-
Ivanov D, Kwak YT, Guo J, Gaynor RB (2000) Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol Cell Biol 20(9):2970-2983.
-
(2000)
Mol Cell Biol
, vol.20
, Issue.9
, pp. 2970-2983
-
-
Ivanov, D.1
Kwak, Y.T.2
Guo, J.3
Gaynor, R.B.4
-
34
-
-
0242321980
-
Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis
-
Pei Y, Shuman S (2003) Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis. J Biol Chem 278(44):43346-43356.
-
(2003)
J Biol Chem
, vol.278
, Issue.44
, pp. 43346-43356
-
-
Pei, Y.1
Shuman, S.2
-
35
-
-
30744449491
-
P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation
-
Yamada T, et al. (2006) P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell 21(2):227-237.
-
(2006)
Mol Cell
, vol.21
, Issue.2
, pp. 227-237
-
-
Yamada, T.1
-
36
-
-
77958559139
-
Leo1 subunit of the yeast paf1 complex binds RNA and contributes to complex recruitment
-
Dermody JL, Buratowski S (2010) Leo1 subunit of the yeast paf1 complex binds RNA and contributes to complex recruitment. J Biol Chem 285(44):33671-33679.
-
(2010)
J Biol Chem
, vol.285
, Issue.44
, pp. 33671-33679
-
-
Dermody, J.L.1
Buratowski, S.2
-
37
-
-
37549056194
-
Structure and DNA binding of the human Rtf1 Plus3 domain
-
de Jong RN, et al. (2008) Structure and DNA binding of the human Rtf1 Plus3 domain. Structure 16(1):149-159.
-
(2008)
Structure
, vol.16
, Issue.1
, pp. 149-159
-
-
De Jong, R.N.1
-
38
-
-
23944445861
-
BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex
-
Laribee RN, et al. (2005) BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr Biol 15(16):1487-1493.
-
(2005)
Curr Biol
, vol.15
, Issue.16
, pp. 1487-1493
-
-
Laribee, R.N.1
-
39
-
-
27944450463
-
The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS
-
Wood A, Schneider J, Dover J, Johnston M, Shilatifard A (2005) The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol Cell 20(4):589-599.
-
(2005)
Mol Cell
, vol.20
, Issue.4
, pp. 589-599
-
-
Wood, A.1
Schneider, J.2
Dover, J.3
Johnston, M.4
Shilatifard, A.5
-
40
-
-
79960621198
-
Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation
-
Bian C, et al. (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30(14):2829-2842.
-
(2011)
EMBO J
, vol.30
, Issue.14
, pp. 2829-2842
-
-
Bian, C.1
-
41
-
-
77956522905
-
The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor
-
Hauk G, McKnight JN, Nodelman IM, Bowman GD (2010) The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol Cell 39(5): 711-723.
-
(2010)
Mol Cell
, vol.39
, Issue.5
, pp. 711-723
-
-
Hauk, G.1
McKnight, J.N.2
Nodelman, I.M.3
Bowman, G.D.4
-
42
-
-
82955233813
-
Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins
-
Tripsianes K, et al. (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18(12): 1414-1420.
-
(2011)
Nat Struct Mol Biol
, vol.18
, Issue.12
, pp. 1414-1420
-
-
Tripsianes, K.1
-
43
-
-
33845666681
-
Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair
-
Botuyan MV, et al. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127(7):1361-1373.
-
(2006)
Cell
, vol.127
, Issue.7
, pp. 1361-1373
-
-
Botuyan, M.V.1
-
44
-
-
78649842259
-
Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain
-
Liu K, et al. (2010) Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc Natl Acad Sci USA 107(43):18398-18403.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, Issue.43
, pp. 18398-18403
-
-
Liu, K.1
-
45
-
-
56049092342
-
A quantitative model of thermal stabilization and destabilization of proteins by ligands
-
Cimmperman P, et al. (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95(7):3222-3231.
-
(2008)
Biophys J
, vol.95
, Issue.7
, pp. 3222-3231
-
-
Cimmperman, P.1
-
46
-
-
37249005205
-
The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability
-
Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2(9): 2212-2221.
-
(2007)
Nat Protoc
, vol.2
, Issue.9
, pp. 2212-2221
-
-
Niesen, F.H.1
Berglund, H.2
Vedadi, M.3
-
47
-
-
53049102663
-
Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II
-
Becker R, Loll B, Meinhart A (2008) Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II. J Biol Chem 283(33):22659-22669.
-
(2008)
J Biol Chem
, vol.283
, Issue.33
, pp. 22659-22669
-
-
Becker, R.1
Loll, B.2
Meinhart, A.3
-
48
-
-
3142615882
-
Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors
-
Meinhart A, Cramer P (2004) Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430(6996):223-226.
-
(2004)
Nature
, vol.430
, Issue.6996
, pp. 223-226
-
-
Meinhart, A.1
Cramer, P.2
-
49
-
-
77955423898
-
Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain
-
Kim D, et al. (2010) Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain. Nat Struct Mol Biol 17(8):1027-1029.
-
(2010)
Nat Struct Mol Biol
, vol.17
, Issue.8
, pp. 1027-1029
-
-
Kim, D.1
-
50
-
-
84862977456
-
CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II
-
Mayer A, et al. (2012) CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336(6089):1723-1725.
-
(2012)
Science
, vol.336
, Issue.6089
, pp. 1723-1725
-
-
Mayer, A.1
-
51
-
-
77957770031
-
Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain
-
Lunde BM, et al. (2010) Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat Struct Mol Biol 17(10):1195-1201.
-
(2010)
Nat Struct Mol Biol
, vol.17
, Issue.10
, pp. 1195-1201
-
-
Lunde, B.M.1
|