메뉴 건너뛰기




Volumn 4, Issue , 2016, Pages

RNA-Seq workflow: Gene-level exploratory analysis and differential expression

Author keywords

Bioconductor; Differential expression; Gene expression; Genomics; High throughput sequencing; RNA seq; Statistical analysis; Visualization

Indexed keywords

ARTICLE; DATA ANALYSIS; EXPLORATORY RESEARCH; GENE EXPRESSION; GENOMICS; HIGH THROUGHPUT SEQUENCING; QUALITY CONTROL; RNA SEQUENCING; WORKFLOW;

EID: 85091232873     PISSN: 20461402     EISSN: 1759796X     Source Type: Journal    
DOI: 10.12688/f1000research.7035.2     Document Type: Article
Times cited : (187)

References (40)
  • 1
    • 84903193221 scopus 로고    scopus 로고
    • RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells
    • 24926665, 4057123
    • Himes BE Jiang X Wagner P : RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLoS One. 2014;9(6):e99625. 24926665 10.1371/journal.pone.0099625 4057123
    • (2014) PLoS One , vol.9 , Issue.6
    • Himes, B.E.1    Jiang, X.2    Wagner, P.3
  • 2
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • 25516281, 4302049
    • Love MI Huber W Anders S : Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. 25516281 10.1101/002832 4302049
    • (2014) Genome Biol , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 3
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • 19910308, 2796818
    • Robinson MD McCarthy DJ Smyth GK : edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140. 19910308 10.1093/bioinformatics/btp616 2796818
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 4
    • 84896735766 scopus 로고    scopus 로고
    • voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • 24485249, 4053721
    • Law CW Chen Y Shi W : voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29. 24485249 10.1186/gb-2014-15-2-r29 4053721
    • (2014) Genome Biol , vol.15 , Issue.2 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3
  • 5
    • 84874912212 scopus 로고    scopus 로고
    • A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
    • 23001152, 3590927
    • Wu H Wang C Wu Z : A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics. 2013;14(2):232-243. 23001152 10.1093/biostatistics/kxs033 3590927
    • (2013) Biostatistics , vol.14 , Issue.2 , pp. 232-243
    • Wu, H.1    Wang, C.2    Wu, Z.3
  • 6
    • 84876263777 scopus 로고    scopus 로고
    • EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments
    • 23428641, 3624807
    • Leng N Dawson JA Thomson JA : EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29(8):1035-1043. 23428641 10.1093/bioinformatics/btt087 3624807
    • (2013) Bioinformatics , vol.29 , Issue.8 , pp. 1035-1043
    • Leng, N.1    Dawson, J.A.2    Thomson, J.A.3
  • 7
    • 77955298482 scopus 로고    scopus 로고
    • baySeq: empirical Bayesian methods for identifying differential expression in sequence count data
    • 20698981, 2928208
    • Hardcastle TJ Kelly KA : baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics. 2010;11(1):422. 20698981 10.1186/1471-2105-11-422 2928208
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 8
    • 84900328038 scopus 로고    scopus 로고
    • Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
    • 24752080, 4077321
    • Patro R Mount SM Kingsford C : Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol. 2014;32(5):462-464. 24752080 10.1038/nbt.2862 4077321
    • (2014) Nat Biotechnol , vol.32 , Issue.5 , pp. 462-464
    • Patro, R.1    Mount, S.M.2    Kingsford, C.3
  • 9
    • 84976335724 scopus 로고    scopus 로고
    • Salmon provides accurate, fast, and bias-aware transcript expression estimates using dual-phase inference
    • Patro R Duggal G Love MI : Salmon provides accurate, fast, and bias-aware transcript expression estimates using dual-phase inference. bioRxiv. 2016. 10.1101/021592
    • (2016) bioRxiv
    • Patro, R.1    Duggal, G.2    Love, M.I.3
  • 10
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic rna-seq quantification
    • 27043002
    • Bray NL Pimentel H Melsted P : Near-optimal probabilistic rna-seq quantification. Nat Biotechnol. 2016;34(5):525-527. 27043002 10.1038/nbt.3519
    • (2016) Nat Biotechnol , vol.34 , Issue.5 , pp. 525-527
    • Bray, N.L.1    Pimentel, H.2    Melsted, P.3
  • 11
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
    • 21816040, 3163565
    • Li B Dewey CN : RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. 21816040 10.1186/1471-2105-12-323 3163565
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 12
    • 84872198346 scopus 로고    scopus 로고
    • Differential analysis of gene regulation at transcript resolution with RNA-seq
    • 23222703, 3869392
    • Trapnell C Hendrickson DG Sauvageau M : Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46-53. 23222703 10.1038/nbt.2450 3869392
    • (2013) Nat Biotechnol , vol.31 , Issue.1 , pp. 46-53
    • Trapnell, C.1    Hendrickson, D.G.2    Sauvageau, M.3
  • 13
    • 84941261782 scopus 로고    scopus 로고
    • Errors in RNA-Seq quantification affect genes of relevance to human disease
    • 26335491, 4558956
    • Robert C Watson M : Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biol. 2015;16(1):177. 26335491 10.1186/s13059-015-0734-x 4558956
    • (2015) Genome Biol , vol.16 , Issue.1 , pp. 177
    • Robert, C.1    Watson, M.2
  • 14
    • 85010908291 scopus 로고    scopus 로고
    • Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences [version 2; referees: 2 approved]
    • 26925227, 4712774
    • Soneson C Love MI Robinson MD : Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences [version 2; referees: 2 approved]. F1000Res. 2015;4:1521. 26925227 10.12688/f1000research.7563.2 4712774
    • (2015) F1000Res , vol.4 , pp. 1521
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 15
    • 84891768365 scopus 로고    scopus 로고
    • Ensembl 2014
    • 24316576, 3964975
    • Flicek P Amode MR Barrell D : Ensembl 2014. Nucleic Acids Res. 2014;42(Database issue):D749-D755. 24316576 10.1093/nar/gkt1196 3964975
    • (2014) Nucleic Acids Res , vol.42 , Issue.DATABASE ISSUE , pp. D749-D755
    • Flicek, P.1    Amode, M.R.2    Barrell, D.3
  • 16
    • 84871809302 scopus 로고    scopus 로고
    • STAR: ultrafast universal RNA-seq aligner
    • 23104886, 3530905
    • Dobin A Davis CA Schlesinger F : STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. 23104886 10.1093/bioinformatics/bts635 3530905
    • (2013) Bioinformatics , vol.29 , Issue.1 , pp. 15-21
    • Dobin, A.1    Davis, C.A.2    Schlesinger, F.3
  • 17
    • 68549104404 scopus 로고    scopus 로고
    • The Sequence Alignment/Map format and SAMtools
    • 19505943, 2723002
    • Li H Handsaker B Wysoker A : The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England). 2009;25(16):2078-2079. 19505943 10.1093/bioinformatics/btp352 2723002
    • (2009) Bioinformatics (Oxford, England) , vol.25 , Issue.16 , pp. 2078-2079
    • Li, H.1    Handsaker, B.2    Wysoker, A.3
  • 18
    • 84883368195 scopus 로고    scopus 로고
    • Software for computing and annotating genomic ranges
    • 23950696, 3738458
    • Lawrence M Huber W Pagès H : Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9(8):e1003118. 23950696 10.1371/journal.pcbi.1003118 3738458
    • (2013) PLoS Comput Biol , vol.9 , Issue.8
    • Lawrence, M.1    Huber, W.2    Pagès, H.3
  • 19
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • 24227677
    • Liao Y Smyth GK Shi W : featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-930. 24227677 10.1093/bioinformatics/btt656
    • (2014) Bioinformatics , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 20
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq--a Python framework to work with high-throughput sequencing data
    • 25260700, 4287950
    • Anders S Pyl PT Huber W : HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166-169. 25260700 10.1093/bioinformatics/btu638 4287950
    • (2015) Bioinformatics , vol.31 , Issue.2 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 21
    • 0036079158 scopus 로고    scopus 로고
    • The human genome browser at UCSC
    • 12045153, 186604
    • Kent WJ Sugnet CW Furey TS : The human genome browser at UCSC. Genome Res. 2002;12(6):996-1006. 12045153 10.1101/gr.229102 186604
    • (2002) Genome Res , vol.12 , Issue.6 , pp. 996-1006
    • Kent, W.J.1    Sugnet, C.W.2    Furey, T.S.3
  • 22
    • 68449101067 scopus 로고    scopus 로고
    • Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt
    • 19617889, 3159387
    • Durinck S Spellman PT Birney E : Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184-1191. 19617889 10.1038/nprot.2009.97 3159387
    • (2009) Nat Protoc , vol.4 , Issue.8 , pp. 1184-1191
    • Durinck, S.1    Spellman, P.T.2    Birney, E.3
  • 23
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating high-throughput genomic analysis with Bioconductor
    • 25633503, 4509590
    • Huber W Carey VJ Gentleman R : Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115-121. 25633503 10.1038/nmeth.3252 4509590
    • (2015) Nat Methods , vol.12 , Issue.2 , pp. 115-121
    • Huber, W.1    Carey, V.J.2    Gentleman, R.3
  • 24
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • 20979621, 3218662
    • Anders S Huber W : Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. 20979621 10.1186/gb-2010-11-10-r106 3218662
    • (2010) Genome Biol , vol.11 , Issue.10 , pp. R106
    • Anders, S.1    Huber, W.2
  • 25
    • 84867897914 scopus 로고    scopus 로고
    • Classification and clustering of sequencing data using a Poisson model
    • Witten DM : Classification and clustering of sequencing data using a Poisson model. Ann Appl Stat. 2011;5(4):2493-2518. 10.1214/11-AOAS493
    • (2011) Ann Appl Stat , vol.5 , Issue.4 , pp. 2493-2518
    • Witten, D.M.1
  • 26
    • 77749296886 scopus 로고    scopus 로고
    • ggplot2
    • Springer, New York, NY,.
    • Wickham H : ggplot2.Springer, New York, NY,2009. 10.1007/978-0-387-98141-3
    • (2009)
    • Wickham, H.1
  • 27
    • 83455238345 scopus 로고    scopus 로고
    • GC-Content Normalization for RNA-Seq Data
    • 22177264, 3315510
    • Risso D Schwartz K Sherlock G : GC-Content Normalization for RNA-Seq Data. BMC Bioinformatics. 2011;12(1):480. 22177264 10.1186/1471-2105-12-480 3315510
    • (2011) BMC Bioinformatics , vol.12 , Issue.1 , pp. 480
    • Risso, D.1    Schwartz, K.2    Sherlock, G.3
  • 28
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • 22285995, 3297825
    • Hansen KD Irizarry RA Wu Z : Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13(2):204-216. 22285995 10.1093/biostatistics/kxr054 3297825
    • (2012) Biostatistics , vol.13 , Issue.2 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 29
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • 25150836, 4404308
    • Risso D Ngai J Speed TP : Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32(9):896-902. 25150836 10.1038/nbt.2931 4404308
    • (2014) Nat Biotechnol , vol.32 , Issue.9 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3
  • 30
    • 84925226706 scopus 로고    scopus 로고
    • svaseq: removing batch effects and other unwanted noise from sequencing data
    • 25294822, 4245966
    • Leek JT : svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 2014;42(21):e161. 25294822 10.1093/nar/gku864 4245966
    • (2014) Nucleic Acids Res , vol.42 , Issue.21
    • Leek, J.T.1
  • 31
    • 84970949920 scopus 로고    scopus 로고
    • How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?
    • 27022035, 4878611
    • Schurch NJ Schofield P Gierliński M : How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 2016;22(6):839-851. 27022035 10.1261/rna.053959.115 4878611
    • (2016) RNA , vol.22 , Issue.6 , pp. 839-851
    • Schurch, N.J.1    Schofield, P.2    Gierliński, M.3
  • 32
    • 84959222823 scopus 로고    scopus 로고
    • Inferential considerations for low-count RNA-seq transcripts: a case study on the dominant prairie grass Andropogon gerardii
    • 26919855, 4769568
    • Raithel S Johnson L Galliart M : Inferential considerations for low-count RNA-seq transcripts: a case study on the dominant prairie grass Andropogon gerardii. BMC Genomics. 2016;17(1):140. 26919855 10.1186/s12864-016-2442-7 4769568
    • (2016) BMC Genomics , vol.17 , Issue.1 , pp. 140
    • Raithel, S.1    Johnson, L.2    Galliart, M.3
  • 33
    • 85027941571 scopus 로고    scopus 로고
    • Modeling overdispersion heterogeneity in differential expression analysis using mixtures
    • 26683201
    • Bonafede E Picard F Robin S : Modeling overdispersion heterogeneity in differential expression analysis using mixtures. Biometrics. 2016;72(3):804-14. 26683201 10.1111/biom.12458
    • (2016) Biometrics , vol.72 , Issue.3 , pp. 804-814
    • Bonafede, E.1    Picard, F.2    Robin, S.3
  • 34
    • 84965043970 scopus 로고    scopus 로고
    • Sample size calculation while controlling false discovery rate for differential expression analysiswith RNA-sequencing experiments
    • 27029470, 4815167
    • Bi R Liu P : Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments. BMC Bioinformatics. 2016;17(1):146. 27029470 10.1186/s12859-016-0994-9 4815167
    • (2016) BMC Bioinformatics , vol.17 , Issue.1 , pp. 146
    • Bi, R.1    Liu, P.2
  • 35
    • 0001677717 scopus 로고
    • Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
    • Reference Source
    • Benjamini Y Hochberg Y : Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met. 1995;57(1):289-300. Reference Source
    • (1995) J Roy Stat Soc B Met , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 36
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • Reference Source, In .
    • Dudoit S Yang YH Callow MJ : Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments.In Statistica Sinica. 2002;12:111-139. Reference Source
    • (2002) Statistica Sinica , vol.12 , pp. 111-139
    • Dudoit, S.1    Yang, Y.H.2    Callow, M.J.3
  • 37
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • 20460310, 2906865
    • Bourgon R Gentleman R Huber W : Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010;107(21):9546-9551. 20460310 10.1073/pnas.0914005107 2906865
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.21 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 38
    • 84973098846 scopus 로고    scopus 로고
    • Data-driven hypothesis weighting increases detection power in genome-scale multiple testing
    • 27240256, 4930141
    • Ignatiadis N Klaus B Zaugg JB : Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat Methods. 2016;13(7):577-580. 27240256 10.1038/nmeth.3885 4930141
    • (2016) Nat Methods , vol.13 , Issue.7 , pp. 577-580
    • Ignatiadis, N.1    Klaus, B.2    Zaugg, J.B.3
  • 39
    • 84900378568 scopus 로고    scopus 로고
    • ReportingTools: an automated result processing and presentation toolkit for high-throughput genomic analyses
    • 24078713
    • Huntley MA Larson JL Chaivorapol C : ReportingTools: an automated result processing and presentation toolkit for high-throughput genomic analyses. Bioinformatics. 2013;29(24):3220-3221. 24078713 10.1093/bioinformatics/btt551
    • (2013) Bioinformatics , vol.29 , Issue.24 , pp. 3220-3221
    • Huntley, M.A.1    Larson, J.L.2    Chaivorapol, C.3
  • 40
    • 84901439351 scopus 로고    scopus 로고
    • A global non-coding RNA system modulates fission yeast protein levels in response to stress
    • 24853205, 4050258
    • Leong HS Dawson K Wirth C : A global non-coding RNA system modulates fission yeast protein levels in response to stress. Nat Commun. 2014;5: 3947. 24853205 10.1038/ncomms4947 4050258
    • (2014) Nat Commun , vol.5
    • Leong, H.S.1    Dawson, K.2    Wirth, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.