메뉴 건너뛰기




Volumn 12, Issue 1, 2018, Pages 26-39

Bioimage-based protein subcellular location prediction: a comprehensive review

Author keywords

bioimage informatics; global and local features; multi location protein recognition; protein subcellular location prediction

Indexed keywords

CLASSIFICATION (OF INFORMATION); FORECASTING; IMAGING TECHNIQUES; LOCATION;

EID: 85019605650     PISSN: 20952228     EISSN: 20952236     Source Type: Journal    
DOI: 10.1007/s11704-016-6309-5     Document Type: Review
Times cited : (36)

References (117)
  • 1
    • 77954523086 scopus 로고    scopus 로고
    • Options and considerations when selecting a quantitative proteomics strategy
    • Domon B, Aebersold R. Options and considerations when selecting a quantitative proteomics strategy. Nature Biotechnology, 2010, 28(7): 710–721
    • (2010) Nature Biotechnology , vol.28 , Issue.7 , pp. 710-721
    • Domon, B.1    Aebersold, R.2
  • 2
    • 84871297843 scopus 로고    scopus 로고
    • Next-generation proteomics: towards an integrative view of proteome dynamics
    • Altelaar A F, Munoz J, Heck A J. Next-generation proteomics: towards an integrative view of proteome dynamics. Nature Reviews Genetics, 2013, 14(1): 35–48
    • (2013) Nature Reviews Genetics , vol.14 , Issue.1 , pp. 35-48
    • Altelaar, A.F.1    Munoz, J.2    Heck, A.J.3
  • 3
    • 0037434980 scopus 로고    scopus 로고
    • From genomics to proteomics
    • Tyers M, Mann M. From genomics to proteomics. Nature, 2003, 422(6928): 193–197
    • (2003) Nature , vol.422 , Issue.6928 , pp. 193-197
    • Tyers, M.1    Mann, M.2
  • 4
    • 84861234451 scopus 로고    scopus 로고
    • Bioinformatics: Next-generation omics
    • Casci T. Bioinformatics: Next-generation omics. Nature Reviews Genetics, 2012, 13(6): 378–379
    • (2012) Nature Reviews Genetics , vol.13 , Issue.6 , pp. 378-379
    • Casci, T.1
  • 5
    • 0037370478 scopus 로고    scopus 로고
    • Bioinformatics in the post-sequence era
    • Kanehisa M, Bork P. Bioinformatics in the post-sequence era. Nature Genetics, 2003, 33: 305–310
    • (2003) Nature Genetics , vol.33 , pp. 305-310
    • Kanehisa, M.1    Bork, P.2
  • 6
    • 84902593593 scopus 로고    scopus 로고
    • An explosion of bioinformatics careers
    • Levine A G. An explosion of bioinformatics careers. Science, 2014, 344(6189): 1303–1306
    • (2014) Science , vol.344 , Issue.6189 , pp. 1303-1306
    • Levine, A.G.1
  • 8
    • 84900826779 scopus 로고    scopus 로고
    • A new era in bioimage informatics
    • Murphy R F. A new era in bioimage informatics. Bioinformatics, 2014, 30(10): 1353–1353
    • (2014) Bioinformatics , vol.30 , Issue.10 , pp. 1353
    • Murphy, R.F.1
  • 9
    • 50549104043 scopus 로고    scopus 로고
    • Bioimage informatics: a new area of engineering biology
    • Peng H. Bioimage informatics: a new area of engineering biology. Bioinformatics, 2008, 24(17): 1827–1836
    • (2008) Bioinformatics , vol.24 , Issue.17 , pp. 1827-1836
    • Peng, H.1
  • 10
    • 84877758233 scopus 로고    scopus 로고
    • Some remarks on predicting multi-label attributes in molecular biosystems
    • Chou K-C. Some remarks on predicting multi-label attributes in molecular biosystems. Molecular Biosystems, 2013, 9(6): 1092–1100
    • (2013) Molecular Biosystems , vol.9 , Issue.6 , pp. 1092-1100
    • Chou, K.-C.1
  • 11
    • 84857219453 scopus 로고    scopus 로고
    • Protein localization in disease and therapy
    • Hung M-C, Link W. Protein localization in disease and therapy. Journal of Cell Science, 2011, 124(20): 3381–3392
    • (2011) Journal of Cell Science , vol.124 , Issue.20 , pp. 3381-3392
    • Hung, M.-C.1    Link, W.2
  • 12
    • 84869389633 scopus 로고    scopus 로고
    • Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization
    • Komor A C, Schneider C J, Weidmann A G, Barton J K. Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization. Journal of the American Chemical Society, 2012, 134(46): 19223–19233
    • (2012) Journal of the American Chemical Society , vol.134 , Issue.46 , pp. 19223-19233
    • Komor, A.C.1    Schneider, C.J.2    Weidmann, A.G.3    Barton, J.K.4
  • 14
    • 84953271918 scopus 로고    scopus 로고
    • Mislocalization-related disease gene discovery using gene expression based computational protein localization prediction
    • Liu Z, Hu J. Mislocalization-related disease gene discovery using gene expression based computational protein localization prediction. Methods, 2016, 93: 119–127
    • (2016) Methods , vol.93 , pp. 119-127
    • Liu, Z.1    Hu, J.2
  • 15
    • 84871426975 scopus 로고    scopus 로고
    • Cytoplasmic mislocalization of overexpressed FOXF1 is associated with the malignancy and metastasis of colorectal adenocarcinomas
    • Lo P-K, Lee J S, Chen H, Reisman D, Berger F G, Sukumar S. Cytoplasmic mislocalization of overexpressed FOXF1 is associated with the malignancy and metastasis of colorectal adenocarcinomas. Experimental and Molecular Pathology, 2013, 94(1): 262–269
    • (2013) Experimental and Molecular Pathology , vol.94 , Issue.1 , pp. 262-269
    • Lo, P.-K.1    Lee, J.S.2    Chen, H.3    Reisman, D.4    Berger, F.G.5    Sukumar, S.6
  • 17
    • 77952811130 scopus 로고    scopus 로고
    • Going from where to why—interpretable prediction of protein subcellular localization
    • Briesemeister S, Rahnenführer J, Kohlbacher O. Going from where to why—interpretable prediction of protein subcellular localization. Bioinformatics, 2010, 26(9): 1232–1238
    • (2010) Bioinformatics , vol.26 , Issue.9 , pp. 1232-1238
    • Briesemeister, S.R.J.1    Kohlbacher, O.2
  • 18
    • 39449105071 scopus 로고    scopus 로고
    • Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms
    • Chou K-C, Shen H-B. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008, 3(2): 153–162
    • (2008) Nature Protocols , vol.3 , Issue.2 , pp. 153-162
    • Chou, K.-C.1    Shen, H.-B.2
  • 19
    • 78449279166 scopus 로고    scopus 로고
    • Prediction of subcellular locations of proteins: where to proceed
    • Imai K, Nakai K. Prediction of subcellular locations of proteins: where to proceed? Proteomics, 2010, 10(22): 3970–3983
    • (2010) Proteomics , vol.10 , Issue.22 , pp. 3970-3983
    • Imai, K.1    Nakai, K.2
  • 20
    • 36448952353 scopus 로고    scopus 로고
    • Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM
    • Shen H B, Chou K C. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Engineering, Design and Selection, 2007, 20(11): 561–567
    • (2007) Protein Engineering, Design and Selection , vol.20 , Issue.11 , pp. 561-567
    • Shen, H.B.1    Chou, K.C.2
  • 21
    • 77953298113 scopus 로고    scopus 로고
    • A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0
    • Chou K-C, Shen H-B. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One, 2010, 5(4): e9931
    • (2010) PLoS One , vol.5 , Issue.4
    • Chou, K.-C.1    Shen, H.-B.2
  • 22
    • 35448970604 scopus 로고    scopus 로고
    • Protein subcellular localization prediction based on compartment-specific features and structure conservation
    • Su E, Chiu H-S, Lo A, Hwang J-K, Sung T-Y, Hsu W-L. Protein subcellular localization prediction based on compartment-specific features and structure conservation. BMC Bioinformatics, 2007, 8(1): 1
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 1
    • Su, E.1    Chiu, H.-S.2    Lo, A.3    Hwang, J.-K.4    Sung, T.-Y.5    Hsu, W.-L.6
  • 23
    • 33645301274 scopus 로고    scopus 로고
    • Detecting and sorting targeting peptides with neural networks and support vector machines
    • Hawkins J, Bodén M. Detecting and sorting targeting peptides with neural networks and support vector machines. Journal of Bioinformatics and Computational Biology, 2006, 4(1): 1–18
    • (2006) Journal of Bioinformatics and Computational Biology , vol.4 , Issue.1 , pp. 1-18
    • Hawkins, J.1    Bodén, M.2
  • 24
    • 34548281030 scopus 로고    scopus 로고
    • Imaging in systems biology
    • Megason S G, Fraser S E. Imaging in systems biology. Cell, 2007, 130(5): 784–795
    • (2007) Cell , vol.130 , Issue.5 , pp. 784-795
    • Megason, S.G.1    Fraser, S.E.2
  • 26
    • 84919941278 scopus 로고    scopus 로고
    • Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers
    • Kumar A, Rao A, Bhavani S, Newberg J Y, Murphy R F. Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers. Proceedings of the National Academy of Sciences, 2014, 111(51): 18249–18254
    • (2014) Proceedings of the National Academy of Sciences , vol.111 , Issue.51 , pp. 18249-18254
    • Kumar, A.1    Rao, A.2    Bhavani, S.3    Newberg, J.Y.4    Murphy, R.F.5
  • 27
    • 84929144235 scopus 로고    scopus 로고
    • Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning
    • Xu Y-Y, Yang F, Zhang Y, Shen H-B. Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Bioinformatics, 2015, 31(7): 1111–1119
    • (2015) Bioinformatics , vol.31 , Issue.7 , pp. 1111-1119
    • Xu, Y.-Y.1    Yang, F.2    Zhang, Y.3    Shen, H.-B.4
  • 29
    • 84880982053 scopus 로고    scopus 로고
    • An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues
    • Xu Y-Y, Yang F, Zhang Y, Shen H-B. An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Bioinformatics, 2013, 29(16): 2032–2040
    • (2013) Bioinformatics , vol.29 , Issue.16 , pp. 2032-2040
    • Xu, Y.-Y.1    Yang, F.2    Zhang, Y.3    Shen, H.-B.4
  • 30
    • 84859336916 scopus 로고    scopus 로고
    • CellOrganizer: image-derived models of subcellular organization and protein distribution
    • Murphy R F. CellOrganizer: image-derived models of subcellular organization and protein distribution. Methods in Cell Biology, 2012, 110: 179
    • (2012) Methods in Cell Biology , vol.110 , pp. 179
    • Murphy, R.F.1
  • 35
    • 0034280113 scopus 로고    scopus 로고
    • Systematic subcellular localization of novel proteins identified by largescale cDNA sequencing
    • Simpson J C, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S. Systematic subcellular localization of novel proteins identified by largescale cDNA sequencing. EMBO Reports, 2000, 1(3): 287–292
    • (2000) EMBO Reports , vol.1 , Issue.3 , pp. 287-292
    • Simpson, J.C.1    Wellenreuther, R.2    Poustka, A.3    Pepperkok, R.4    Wiemann, S.5
  • 37
    • 34548837778 scopus 로고    scopus 로고
    • Phenotype clustering of breast epithelial cells in confocal images based on nuclear protein distribution analysis
    • Long F, Peng H, Sudar D, Lelièvre S A, Knowles D W. Phenotype clustering of breast epithelial cells in confocal images based on nuclear protein distribution analysis. BMC Cell Biology, 2007, 8(Suppl 1): S3
    • (2007) BMC Cell Biology , vol.8 , Issue.1 , pp. S3
    • Long, F.1    Peng, H.2    Sudar, D.3    Lelièvre, S.A.4    Knowles, D.W.5
  • 38
    • 84855185013 scopus 로고    scopus 로고
    • Protein subcellular localization of fluorescence imagery using spatial and transform domain features
    • Tahir M, Khan A, Majid A. Protein subcellular localization of fluorescence imagery using spatial and transform domain features. Bioinformatics, 2012, 28(1): 91–97
    • (2012) Bioinformatics , vol.28 , Issue.1 , pp. 91-97
    • Tahir, M.1    Khan, A.2    Majid, A.3
  • 39
    • 84992437440 scopus 로고    scopus 로고
    • Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction
    • Xu Y-Y, Yang F, Shen H-B. Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction. Bioinformatics, 2016, 32(14): 2184–2192
    • (2016) Bioinformatics , vol.32 , Issue.14 , pp. 2184-2192
    • Xu, Y.-Y.1    Yang, F.2    Shen, H.-B.3
  • 40
    • 33645798851 scopus 로고    scopus 로고
    • The fluorescent toolbox for assessing protein location and function
    • Giepmans B N, Adams S R, Ellisman M H, Tsien R Y. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312(5771): 217–224
    • (2006) Science , vol.312 , Issue.5771 , pp. 217-224
    • Giepmans, B.N.1    Adams, S.R.2    Ellisman, M.H.3    Tsien, R.Y.4
  • 41
    • 85040289702 scopus 로고    scopus 로고
    • content analysis with cellular and tissue systems biology: a bridge between cancer cell biology and tissue-based diagnostics. The Molecular Basis of
    • T, C, R
    • Gough A, Lezon T, Faeder J R, Chennubhotla C, Murphy R F, Critchley-Thorne R, Taylor D L. High content analysis with cellular and tissue systems biology: a bridge between cancer cell biology and tissue-based diagnostics. The Molecular Basis of Cancer, 2014, 4
    • (2014) Cancer , vol.4
    • Lezon, G.A.1    Chennubhotla, F.J.R.2    Critchley-Thorne, M.R.F.3    High, T.D.L.4
  • 43
    • 0036852721 scopus 로고    scopus 로고
    • Automated subcellular localization and quantification of protein expression in tissue microarrays
    • Camp R L, Chung G G, Rimm D L. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nature Medicine, 2002, 8(11): 1323–1328
    • (2002) Nature Medicine , vol.8 , Issue.11 , pp. 1323-1328
    • Camp, R.L.1    Chung, G.G.2    Rimm, D.L.3
  • 44
    • 0037418906 scopus 로고    scopus 로고
    • Light microscopy techniques for live cell imaging
    • Stephens D J, Allan V J. Light microscopy techniques for live cell imaging. Science, 2003, 300(5616): 82–86
    • (2003) Science , vol.300 , Issue.5616 , pp. 82-86
    • Stephens, D.J.1    Allan, V.J.2
  • 47
    • 84863198481 scopus 로고    scopus 로고
    • Annotated high-throughput microscopy image sets for validation
    • Ljosa V, Sokolnicki K L, Carpenter A E. Annotated high-throughput microscopy image sets for validation. Nat Methods, 2012, 9(7): 637
    • (2012) Nat Methods , vol.9 , Issue.7 , pp. 637
    • Ljosa, V.1    Sokolnicki, K.L.2    Carpenter, A.E.3
  • 50
    • 57149110826 scopus 로고    scopus 로고
    • The Human Protein Atlas—a tool for pathology
    • Pontèn F, Jirström K, Uhlen M. The Human Protein Atlas—a tool for pathology. The Journal of Pathology, 2008, 216(4): 387–393
    • (2008) The Journal of Pathology , vol.216 , Issue.4 , pp. 387-393
    • Pontèn, F.1    Jirström, K.2    Uhlen, M.3
  • 52
    • 33845760114 scopus 로고    scopus 로고
    • Automated subcellular location determination and high-throughput microscopy
    • Glory E, Murphy R F. Automated subcellular location determination and high-throughput microscopy. Developmental Cell, 2007, 12(1): 7–16
    • (2007) Developmental Cell , vol.12 , Issue.1 , pp. 7-16
    • Glory, E.1    Murphy, R.F.2
  • 53
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland M V, Markey M K, Murphy R F. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry, 1998, 33(3): 366–375
    • (1998) Cytometry , vol.33 , Issue.3 , pp. 366-375
    • Boland, M.V.1    Markey, M.K.2    Murphy, R.F.3
  • 58
    • 0347125201 scopus 로고    scopus 로고
    • LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system
    • Bannasch D, Mehrle A, Glatting K H, Pepperkok R, Poustka A, Wiemann S. LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system. Nucleic Acids Research, 2004, 32(Suppl 1): D505–D508
    • (2004) Nucleic Acids Research , vol.32 , Issue.1 , pp. D505-D508
    • Bannasch, D.1    Mehrle, A.2    Glatting, K.H.3    Pepperkok, R.4    Poustka, A.5    Wiemann, S.6
  • 60
    • 84870595917 scopus 로고    scopus 로고
    • Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas
    • Li J, Newberg J Y, Uhlén M, Lundberg E, Murphy R F. Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas. PloS One, 2012, 7(11): e50514
    • (2012) PloS One , vol.7 , Issue.11
    • Li, J.1    Newberg, J.Y.2    Uhlén, M.3    Lundberg, E.4    Murphy, R.F.5
  • 62
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland M V, Murphy R F. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 2001, 17(12): 1213–1223
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 63
    • 49849090542 scopus 로고    scopus 로고
    • A framework for the automated analysis of subcellular patterns in human protein atlas images
    • Newberg J, Murphy R F. A framework for the automated analysis of subcellular patterns in human protein atlas images. Journal of Proteome Research, 2008, 7(6): 2300–2308
    • (2008) Journal of Proteome Research , vol.7 , Issue.6 , pp. 2300-2308
    • Newberg, J.1    Murphy, R.F.2
  • 65
    • 84960172820 scopus 로고    scopus 로고
    • Protein subcellular localization of fluorescence microscopy images: employing new statistical and Texton based image features and SVM based ensemble classification
    • Tahir M, Khan A. Protein subcellular localization of fluorescence microscopy images: employing new statistical and Texton based image features and SVM based ensemble classification. Information Sciences, 2016, 345: 65–80
    • (2016) Information Sciences , vol.345 , pp. 65-80
    • Tahir, M.1    Khan, A.2
  • 67
    • 84885313661 scopus 로고    scopus 로고
    • Subcellular localization using fluorescence imagery: utilizing ensemble classification with diverse feature extraction strategies and data balancing
    • Tahir M, Khan A, Majid A, Lumini A. Subcellular localization using fluorescence imagery: utilizing ensemble classification with diverse feature extraction strategies and data balancing. Applied Soft Computing, 2013, 13(11): 4231–4243
    • (2013) Applied Soft Computing , vol.13 , Issue.11 , pp. 4231-4243
    • Tahir, M.1    Khan, A.2    Majid, A.3    Lumini, A.4
  • 68
    • 80255132026 scopus 로고    scopus 로고
    • Survey on LBP based texture descriptors for image classification
    • Nanni L, Lumini A, Brahnam S. Survey on LBP based texture descriptors for image classification. Expert Systems with Applications, 2012, 39(3): 3634–3641
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 3634-3641
    • Nanni, L.1    Lumini, A.2    Brahnam, S.3
  • 69
    • 84874917268 scopus 로고    scopus 로고
    • Nonbinary coding for texture descriptors in sub-cellular and stem cell image classification
    • Paci M, Nanni L, Lahti A, Aalto-Setala K, Hyttinen J, Severi S. Nonbinary coding for texture descriptors in sub-cellular and stem cell image classification. Current Bioinformatics, 2013, 8(2): 208–219
    • (2013) Current Bioinformatics , vol.8 , Issue.2 , pp. 208-219
    • Paci, M.1    Nanni, L.2    Lahti, A.3    Aalto-Setala, K.4    Hyttinen, J.5    Severi, S.6
  • 70
    • 84904110705 scopus 로고    scopus 로고
    • Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification
    • Yang F, Xu Y-Y, Shen H-B. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification? The Scientific World Journal, 2014
    • (2014) The Scientific World Journal
    • Yang, F.1    Xu, Y.-Y.2    Shen, H.-B.3
  • 71
    • 84930845786 scopus 로고    scopus 로고
    • CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae
    • Koh J L, Chong Y T, Friesen H, Moses A, Boone C, Andrews B J, Moffat J. CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2015, 5(6): 1223–1232
    • (2015) G3: Genes, Genomes, Genetics , vol.5 , Issue.6 , pp. 1223-1232
    • Koh, J.L.1    Chong, Y.T.2    Friesen, H.3    Moses, A.4    Boone, C.5    Andrews, B.J.6    Moffat, J.7
  • 72
    • 84894049998 scopus 로고    scopus 로고
    • Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features
    • Yang F, Xu Y-Y, Wang S-T, Shen H-B. Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features. Neurocomputing, 2014, 131: 113–123
    • (2014) Neurocomputing , vol.131 , pp. 113-123
    • Yang, F.1    Xu, Y.-Y.2    Wang, S.-T.3    Shen, H.-B.4
  • 73
    • 76849093371 scopus 로고    scopus 로고
    • Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor
    • Zhang B, Gao Y, Zhao S, Liu J. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 2010, 19(2): 533–544
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.2 , pp. 533-544
    • Zhang, B.1    Gao, Y.2    Zhao, S.3    Liu, J.4
  • 74
    • 77952607168 scopus 로고    scopus 로고
    • A completed modeling of local binary pattern operator for texture classification
    • Guo Z, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 2010, 19(6): 1657–1663
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.6 , pp. 1657-1663
    • Guo, Z.1    Zhang, L.2    Zhang, D.3
  • 76
    • 26444451080 scopus 로고    scopus 로고
    • Object type recognition for automated analysis of protein subcellular location
    • Zhao T, Velliste M, Boland MV, Murphy R F. Object type recognition for automated analysis of protein subcellular location. IEEE Transactions on Image Processing, 2005, 14(9): 1351–1359
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.9 , pp. 1351-1359
    • Zhao, T.1    Velliste, M.B.M.2    Murphy, R.F.3
  • 80
    • 44349190845 scopus 로고    scopus 로고
    • A reliable method for cell phenotype image classification
    • Nanni L, Lumini A. A reliable method for cell phenotype image classification. Artificial Intelligence in Medicine, 2008, 43(2): 87–97
    • (2008) Artificial Intelligence in Medicine , vol.43 , Issue.2 , pp. 87-97
    • Nanni, L.1    Lumini, A.2
  • 83
    • 34250216344 scopus 로고    scopus 로고
    • Image-based multivariate profiling of drug responses from single cells
    • Loo L-H, Wu L F, Altschuler S J. Image-based multivariate profiling of drug responses from single cells. Nature Methods, 2007, 4(5): 445–453
    • (2007) Nature Methods , vol.4 , Issue.5 , pp. 445-453
    • Loo, L.-H.1    Wu, L.F.2    Altschuler, S.J.3
  • 87
    • 84979990727 scopus 로고    scopus 로고
    • Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning
    • Pärnamaa T, Parts L. Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning. bioRxiv, 2016: 050757
    • (2016) bioRxiv , pp. 050757
    • Pärnamaa, T.1    Parts, L.2
  • 88
    • 84863505983 scopus 로고    scopus 로고
    • Protein subcellular location pattern classification in cellular images using latent discriminative models
    • Li J, Xiong L, Schneider J, Murphy R F. Protein subcellular location pattern classification in cellular images using latent discriminative models. Bioinformatics, 2012, 28(12): i32–i39
    • (2012) Bioinformatics , vol.28 , Issue.12 , pp. i32-i39
    • Li, J.1    Xiong, L.2    Schneider, J.3    Murphy, R.F.4
  • 90
    • 13344280993 scopus 로고    scopus 로고
    • Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
    • Huang K, Murphy R F. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics, 2004, 5(1): 78
    • (2004) BMC Bioinformatics , vol.5 , Issue.1 , pp. 78
    • Huang, K.1    Murphy, R.F.2
  • 92
    • 84897388152 scopus 로고    scopus 로고
    • Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins
    • Loo L-H, Laksameethanasan D, Tung Y-L. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins. PLoS Comput Biol, 2014, 10(3): e1003504
    • (2014) PLoS Comput Biol , vol.10 , Issue.3
    • Loo, L.-H.1    Laksameethanasan, D.2    Tung, Y.-L.3
  • 93
    • 33847668306 scopus 로고    scopus 로고
    • Hum-mPLoc: an ensemble classifier for largescale human protein subcellular location prediction by incorporating samples with multiple sites
    • Shen H B, Chou K C. Hum-mPLoc: an ensemble classifier for largescale human protein subcellular location prediction by incorporating samples with multiple sites. Biochemical & Biophysical Research Communications, 2007, 355(4): 1006–1011
    • (2007) Biochemical & Biophysical Research Communications , vol.355 , Issue.4 , pp. 1006-1011
    • Shen, H.B.1    Chou, K.C.2
  • 94
    • 69949101944 scopus 로고    scopus 로고
    • A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0
    • Shen H B, Chou K C. A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Analytical Biochemistry, 2009, 394(2): 269–274
    • (2009) Analytical Biochemistry , vol.394 , Issue.2 , pp. 269-274
    • Shen, H.B.1    Chou, K.C.2
  • 95
    • 72549094674 scopus 로고    scopus 로고
    • Multi label learning for prediction of human protein subcellular localizations
    • Zhu L, Yang J, Shen H-B. Multi label learning for prediction of human protein subcellular localizations. The Protein Journal, 2009, 28(9–10): 384–390
    • (2009) The Protein Journal , vol.28 , Issue.9-10 , pp. 384-390
    • Zhu, L.1    Yang, J.2    Shen, H.-B.3
  • 97
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multilabel classification
    • Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multilabel classification. Machine Learning, 2011, 85(3): 333–359
    • (2011) Machine Learning , vol.85 , Issue.3 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 98
    • 0037995710 scopus 로고    scopus 로고
    • Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis
    • Hu C-D, Kerppola T K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotechnology, 2003, 21(5): 539–545
    • (2003) Nature Biotechnology , vol.21 , Issue.5 , pp. 539-545
    • Hu, C.-D.1    Kerppola, T.K.2
  • 99
    • 84959870798 scopus 로고    scopus 로고
    • Human cell structure-driven model construction for predicting protein subcellular location from biological images
    • Shao W, Liu M, Zhang D. Human cell structure-driven model construction for predicting protein subcellular location from biological images. Bioinformatics, 2016, 32(1): 114–121
    • (2016) Bioinformatics , vol.32 , Issue.1 , pp. 114-121
    • Shao, W.1    Liu, M.2    Zhang, D.3
  • 100
    • 15844414198 scopus 로고    scopus 로고
    • Objective clustering of proteins based on subcellular location patterns
    • Chen X, Murphy R F. Objective clustering of proteins based on subcellular location patterns. BioMed Research International, 2005, 2005(2): 87–95
    • (2005) BioMed Research International , vol.2005 , Issue.2 , pp. 87-95
    • Chen, X.1    Murphy, R.F.2
  • 102
    • 77954179297 scopus 로고    scopus 로고
    • Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing
    • Coelho L P, Peng T, Murphy R F. Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics, 2010, 26(12): i7–i12
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. i7-i12
    • Coelho, L.P.1    Peng, T.2    Murphy, R.F.3
  • 103
    • 39749153580 scopus 로고    scopus 로고
    • Visualizing and clustering high throughput sub-cellular localization imaging
    • Hamilton N A, Teasdale R D. Visualizing and clustering high throughput sub-cellular localization imaging. BMC Bioinformatics, 2008, 9(1): 81
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 81
    • Hamilton, N.A.1    Teasdale, R.D.2
  • 104
    • 84879542641 scopus 로고    scopus 로고
    • Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins
    • Handfield L-F, Chong Y T, Simmons J, Andrews B J, Moses A M. Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins. PLoS Comput Biol, 2013, 9(6): e1003085
    • (2013) PLoS Comput Biol , vol.9 , Issue.6
    • Handfield, L.-F.1    Chong, Y.T.2    Simmons, J.3    Andrews, B.J.4    Moses, A.M.5
  • 112
    • 84961282066 scopus 로고    scopus 로고
    • Active machine learning-driven experimentation to determine compound effects on protein patterns
    • Naik A W, Kangas J D, Sullivan D P, Murphy R F. Active machine learning-driven experimentation to determine compound effects on protein patterns. eLife, 2016, 5: e10047
    • (2016) eLife , vol.5
    • Naik, A.W.1    Kangas, J.D.2    Sullivan, D.P.3    Murphy, R.F.4
  • 113
    • 55449130903 scopus 로고    scopus 로고
    • Predicting protein subcellular localization using intelligent systems
    • Markel S, Leó(eds)
    • Nair R, Rost B. Predicting protein subcellular localization using intelligent systems. In: Markel S, León D, eds. Silico Technology in Drug Target Identification and Validation. Boca Raton, FL: CRC Press, 2006, 261–284
    • (2006) Silico Technology in Drug Target Identification and Validation , pp. 261-284
    • Nair, R.1    Rost, B.2
  • 114
    • 33747872590 scopus 로고    scopus 로고
    • BaCelLo: a balanced subcellular localization predictor
    • Pierleoni A, Martelli P L, Fariselli P, Casadio R. BaCelLo: a balanced subcellular localization predictor. Bioinformatics, 2006, 22(14): e408–e416
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. e408-e416
    • Pierleoni, A.1    Martelli, P.L.2    Fariselli, P.3    Casadio, R.4
  • 115
    • 85040287819 scopus 로고    scopus 로고
    • Multi-label prediction of subcellular localization in confocal images using deep neural networks
    • Winsnes C F, Sullivan D P, Smith K, Lundberg E. Multi-label prediction of subcellular localization in confocal images using deep neural networks. Molecular Biology of the Cell, 2016, 27
    • (2016) Molecular Biology of the Cell , pp. 27
    • Winsnes, C.F.1    Sullivan, D.P.2    Smith, K.3    Lundberg, E.4
  • 117
    • 77951188673 scopus 로고    scopus 로고
    • A generative model of microtubule distributions, and indirect estimation of its parameters from fluorescence microscopy images
    • Shariff A, Murphy R F, Rohde G K. A generative model of microtubule distributions, and indirect estimation of its parameters from fluorescence microscopy images. Cytometry Part A, 2010, 77(5): 457–466
    • (2010) Cytometry Part A , vol.77 , Issue.5 , pp. 457-466
    • Shariff, A.1    Murphy, R.F.2    Rohde, G.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.