메뉴 건너뛰기




Volumn 131, Issue , 2014, Pages 113-123

Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features

Author keywords

Bioimage processing; Ensemble classifier; Feature selection; Local texture pattern; Subcellular location prediction

Indexed keywords


EID: 84894049998     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.10.034     Document Type: Article
Times cited : (32)

References (44)
  • 2
    • 71749110909 scopus 로고    scopus 로고
    • Fusion of systems for automated cell phenotype image classification
    • Nanni L., Lumini A., Lin Y.S., Hsu C.N., Lin C.C. Fusion of systems for automated cell phenotype image classification. Expert Syst. Appl. 2010, 37:1556-1562.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1556-1562
    • Nanni, L.1    Lumini, A.2    Lin, Y.S.3    Hsu, C.N.4    Lin, C.C.5
  • 3
    • 84857219453 scopus 로고    scopus 로고
    • Protein localization in disease and therapy
    • Hung M.-C., Link W. Protein localization in disease and therapy. J. Cell Sci. 2011, 124:3381-3392.
    • (2011) J. Cell Sci. , vol.124 , pp. 3381-3392
    • Hung, M.-C.1    Link, W.2
  • 4
    • 84880982053 scopus 로고    scopus 로고
    • An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues
    • Xu Y.Y., Yang F., Zhang Y., Shen H.B. An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Bioinformatics 2013, 29:2032-2040.
    • (2013) Bioinformatics , vol.29 , pp. 2032-2040
    • Xu, Y.Y.1    Yang, F.2    Zhang, Y.3    Shen, H.B.4
  • 5
    • 39449105071 scopus 로고    scopus 로고
    • Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms
    • Chou K.C., Shen H.B. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protocols 2008, 3:153-162.
    • (2008) Nat. Protocols , vol.3 , pp. 153-162
    • Chou, K.C.1    Shen, H.B.2
  • 6
    • 69949101944 scopus 로고    scopus 로고
    • A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0
    • Shen H.B., Chou K.C. A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Anal. Biochem. 2009, 394:269-274.
    • (2009) Anal. Biochem. , vol.394 , pp. 269-274
    • Shen, H.B.1    Chou, K.C.2
  • 7
    • 77954179297 scopus 로고    scopus 로고
    • Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing
    • Coelho L.P., Peng T., Murphy R.F. Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics 2010, 26:i7-i12.
    • (2010) Bioinformatics , vol.26
    • Coelho, L.P.1    Peng, T.2    Murphy, R.F.3
  • 8
    • 77649263885 scopus 로고    scopus 로고
    • Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns
    • T. Peng, G.M. Bonamy, E. Glory-Afshar, D.R. Rines, S.K. Chanda, R.F. Murphy, Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 2944-2949.
    • (2010) Proc. Natl. Acad. Sci. U.S.A , vol.107 , pp. 2944-2949
    • Peng, T.1    Bonamy, G.M.2    Glory-Afshar, E.3    Rines, D.R.4    Chanda, S.K.5    Murphy, R.F.6
  • 9
    • 79955149044 scopus 로고    scopus 로고
    • Image-derived, three-dimensional generative models of cellular organization
    • Peng T., Murphy R.F. Image-derived, three-dimensional generative models of cellular organization. Cytometry A 2011, 79:383-391.
    • (2011) Cytometry A , vol.79 , pp. 383-391
    • Peng, T.1    Murphy, R.F.2
  • 10
    • 65649126025 scopus 로고    scopus 로고
    • Location proteomics: systematic determination of protein subcellular location
    • Newberg J., Hua J., Murphy R.F. Location proteomics: systematic determination of protein subcellular location. Methods Mol. Biol. 2009, 500:313-332.
    • (2009) Methods Mol. Biol. , vol.500 , pp. 313-332
    • Newberg, J.1    Hua, J.2    Murphy, R.F.3
  • 11
    • 49849090542 scopus 로고    scopus 로고
    • A framework for the automated analysis of subcellular patterns in human protein atlas images
    • Newberg J., Murphy R.F. A framework for the automated analysis of subcellular patterns in human protein atlas images. J. Proteome Res. 2008, 7:2300-2308.
    • (2008) J. Proteome Res. , vol.7 , pp. 2300-2308
    • Newberg, J.1    Murphy, R.F.2
  • 12
    • 0036754439 scopus 로고    scopus 로고
    • Mining knowledge for HEp-2 cell image classification
    • Perner P., Perner H., Müller B. Mining knowledge for HEp-2 cell image classification. Artif. Intell. Med. 2002, 26:161-173.
    • (2002) Artif. Intell. Med. , vol.26 , pp. 161-173
    • Perner, P.1    Perner, H.2    Müller, B.3
  • 13
    • 0036264252 scopus 로고    scopus 로고
    • Automated recognition of intracellular organelles in confocal microscope images
    • Danckaert A., Gonzalez-Couto E., Bollondi L., Thompson N., Hayes B. Automated recognition of intracellular organelles in confocal microscope images. Traffic 2002, 3:66-73.
    • (2002) Traffic , vol.3 , pp. 66-73
    • Danckaert, A.1    Gonzalez-Couto, E.2    Bollondi, L.3    Thompson, N.4    Hayes, B.5
  • 14
    • 84894045638 scopus 로고    scopus 로고
    • Extracting information from text and images for location proteomics
    • Cohen W.W., Murphy R.F., Kou Z. Extracting information from text and images for location proteomics. Mol. Biol. Cell 2003, 12:1541-1555.
    • (2003) Mol. Biol. Cell , vol.12 , pp. 1541-1555
    • Cohen, W.W.1    Murphy, R.F.2    Kou, Z.3
  • 15
    • 44349190845 scopus 로고    scopus 로고
    • A reliable method for cell phenotype image classification
    • Nanni L., Lumini A. A reliable method for cell phenotype image classification. Artif. Intell. Med. 2008, 43:87-97.
    • (2008) Artif. Intell. Med. , vol.43 , pp. 87-97
    • Nanni, L.1    Lumini, A.2
  • 16
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland M.V., Markey M.K., Murphy R.F. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 1998, 33:366-375.
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1    Markey, M.K.2    Murphy, R.F.3
  • 17
    • 33745835457 scopus 로고    scopus 로고
    • A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images
    • Chen S.C., Murphy R. A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images. BMC Bioinformatics 2006, 7:90.
    • (2006) BMC Bioinformatics , vol.7 , pp. 90
    • Chen, S.C.1    Murphy, R.2
  • 18
    • 71049155903 scopus 로고    scopus 로고
    • Efficient framework for automated classification of subcellular patterns in budding yeast
    • Huh S., Lee D., Murphy R.F. Efficient framework for automated classification of subcellular patterns in budding yeast. Cytometry A 2009, 75:934-940.
    • (2009) Cytometry A , vol.75 , pp. 934-940
    • Huh, S.1    Lee, D.2    Murphy, R.F.3
  • 20
    • 38149090988 scopus 로고    scopus 로고
    • Enhanced local texture feature sets for face recognition under difficult lighting conditions
    • Springer, Berlin/Heidelberg
    • Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. Analysis and Modeling of Faces and Gestures 2007, 168-182. Springer, Berlin/Heidelberg.
    • (2007) Analysis and Modeling of Faces and Gestures , pp. 168-182
    • Tan, X.1    Triggs, B.2
  • 21
    • 77953363893 scopus 로고    scopus 로고
    • Local binary patterns variants as texture descriptors for medical image analysis
    • Nanni L., Lumini A., Brahnam S. Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 2010, 49:117-125.
    • (2010) Artif. Intell. Med. , vol.49 , pp. 117-125
    • Nanni, L.1    Lumini, A.2    Brahnam, S.3
  • 22
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D.D., Seung H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 23
    • 0141921564 scopus 로고    scopus 로고
    • Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images
    • Murphy R.F., Velliste M., Porreca G. Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Signal Process. 2003, 35:311-321.
    • (2003) J. VLSI Signal Process. , vol.35 , pp. 311-321
    • Murphy, R.F.1    Velliste, M.2    Porreca, G.3
  • 24
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distributions
    • Ojala T., Pietikäinen M., Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 1996, 29:51-59.
    • (1996) Pattern Recognition , vol.29 , pp. 51-59
    • Ojala, T.1    Pietikäinen, M.2    Harwood, D.3
  • 25
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala T., Pietikainen M., Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24:971-987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 26
    • 54549085366 scopus 로고    scopus 로고
    • Description of interest regions with local binary patterns
    • Heikkilä M., Pietikäinen M., Schmid C. Description of interest regions with local binary patterns. Pattern Recognition 2009, 42:425-436.
    • (2009) Pattern Recognition , vol.42 , pp. 425-436
    • Heikkilä, M.1    Pietikäinen, M.2    Schmid, C.3
  • 27
    • 84874917268 scopus 로고    scopus 로고
    • Non-binary coding for texture descriptors in sub-cellular and stem cell image classification
    • Paci M., Nanni L., Lahti A., Aalto-Setala K., Hyttinen J., Severi S. Non-binary coding for texture descriptors in sub-cellular and stem cell image classification. Curr. Bioinformatics 2013, 8:208-219.
    • (2013) Curr. Bioinformatics , vol.8 , pp. 208-219
    • Paci, M.1    Nanni, L.2    Lahti, A.3    Aalto-Setala, K.4    Hyttinen, J.5    Severi, S.6
  • 28
    • 77950878660 scopus 로고    scopus 로고
    • Improving the accuracy of predicting disulfide connectivity by feature selection
    • Zhu L., Yang J., Song J.N., Chou K.C., Shen H.B. Improving the accuracy of predicting disulfide connectivity by feature selection. J. Comput. Chem. 2010, 31:1478-1485.
    • (2010) J. Comput. Chem. , vol.31 , pp. 1478-1485
    • Zhu, L.1    Yang, J.2    Song, J.N.3    Chou, K.C.4    Shen, H.B.5
  • 29
    • 73449096798 scopus 로고    scopus 로고
    • Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection
    • Pan X.Y., Shen H.B. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein Peptide Lett. 2009, 16:1447-1454.
    • (2009) Protein Peptide Lett. , vol.16 , pp. 1447-1454
    • Pan, X.Y.1    Shen, H.B.2
  • 32
    • 75149123557 scopus 로고    scopus 로고
    • Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences
    • Mizianty M.J., Kurgan L. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences. BMC Bioinformatics 2009, 10:414.
    • (2009) BMC Bioinformatics , vol.10 , pp. 414
    • Mizianty, M.J.1    Kurgan, L.2
  • 35
    • 80053332419 scopus 로고    scopus 로고
    • Gaussian kernel optimization: complex problem and a simple solution
    • Yin J.B., Li T., Shen H.B. Gaussian kernel optimization: complex problem and a simple solution. Neurocomputing 2011, 74:3816-3822.
    • (2011) Neurocomputing , vol.74 , pp. 3816-3822
    • Yin, J.B.1    Li, T.2    Shen, H.B.3
  • 36
    • 84867869093 scopus 로고    scopus 로고
    • GFO: a data driven approach for optimizing the Gaussian function based similarity metric in computational biology
    • Lei J.-B., Yin J.-B., Shen H.-B. GFO: a data driven approach for optimizing the Gaussian function based similarity metric in computational biology. Neurocomputing 2013, 99:307-315.
    • (2013) Neurocomputing , vol.99 , pp. 307-315
    • Lei, J.-B.1    Yin, J.-B.2    Shen, H.-B.3
  • 37
    • 0000667930 scopus 로고    scopus 로고
    • Training v-support vector classifiers: theory and algorithms
    • Chang C.C., Lin C.J. Training v-support vector classifiers: theory and algorithms. Neural Comput. 2001, 13:2119-2147.
    • (2001) Neural Comput. , vol.13 , pp. 2119-2147
    • Chang, C.C.1    Lin, C.J.2
  • 38
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.-W., Lin C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 39
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu T.-F., Lin C.-J., Weng R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5:975-1005.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 40
    • 32544440611 scopus 로고    scopus 로고
    • Ensemble of classifiers for protein fold recognition
    • Loris N. Ensemble of classifiers for protein fold recognition. Neurocomputing 2006, 7-9:850-853.
    • (2006) Neurocomputing , vol.7-9 , pp. 850-853
    • Loris, N.1
  • 41
    • 84873719744 scopus 로고    scopus 로고
    • Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling
    • Yu D.J., Hu J., Tang Z.M., Shen H.B., Yang J., Yang J.Y. Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling. Neurocomputing 2013, 104:180-190.
    • (2013) Neurocomputing , vol.104 , pp. 180-190
    • Yu, D.J.1    Hu, J.2    Tang, Z.M.3    Shen, H.B.4    Yang, J.5    Yang, J.Y.6
  • 42
    • 36448960843 scopus 로고    scopus 로고
    • PFRES: protein fold classification by using evolutionary information and predicted secondary structure
    • Chen K., Kurgan L. PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Bioinformatics 2007, 23:2843-2850.
    • (2007) Bioinformatics , vol.23 , pp. 2843-2850
    • Chen, K.1    Kurgan, L.2
  • 43
    • 33747182577 scopus 로고    scopus 로고
    • Classifier ensembles for protein structural class prediction with varying homology
    • Kedarisetti K.D., Kurgan L., Dick S. Classifier ensembles for protein structural class prediction with varying homology. Biochem. Biophys. Res. Commun. 2006, 348:981-988.
    • (2006) Biochem. Biophys. Res. Commun. , vol.348 , pp. 981-988
    • Kedarisetti, K.D.1    Kurgan, L.2    Dick, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.