메뉴 건너뛰기




Volumn 28, Issue 1, 2012, Pages 91-97

Protein subcellular localization of fluorescence imagery using spatial and transform domain features

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN;

EID: 84855185013     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr624     Document Type: Article
Times cited : (38)

References (24)
  • 1
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland, M. V. et al. (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry, 33, 366-375.
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1
  • 2
    • 0036139314 scopus 로고    scopus 로고
    • Aneural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland, M. V. and Murphy, R. F. (2001) Aneural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 17, 1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 3
    • 34547650901 scopus 로고    scopus 로고
    • A multiresolution approach to automated classification of protein subcellular location images
    • Chebira, A. et al. (2007) A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinformatics, 8, 210.
    • (2007) BMC Bioinformatics , vol.8 , pp. 210
    • Chebira, A.1
  • 4
    • 0003425664 scopus 로고    scopus 로고
    • SupportVector Machines for Classification and Regression
    • Faculty of Engineering, Science and Mathematics, School of Electronics and Computer Science, University of Southampton, Southampton
    • Gunn, S. R. (1998) SupportVector Machines for Classification and Regression. Technical Report. Faculty of Engineering, Science and Mathematics, School of Electronics and Computer Science, University of Southampton, Southampton.
    • (1998) Technical Report
    • Gunn, S.R.1
  • 5
    • 34147142720 scopus 로고    scopus 로고
    • Automated Sub-Cellular Phenotype Classification: An Introduction and Recent Results
    • Australian Computer Society, Inc., Hobart, Australia
    • Hamilton, N. A. et al. (2006) Automated Sub-Cellular Phenotype Classification: An Introduction and Recent Results. The 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006). Australian Computer Society, Inc., Hobart, Australia, pp. 67-72.
    • (2006) The 2006 Workshop on Intelligent Systems for Bioinformatics (WISB 2006) , pp. 67-72
    • Hamilton, N.A.1
  • 6
    • 34147187876 scopus 로고    scopus 로고
    • Fast automated cell phenotype image classification
    • Hamilton, N. A. et al. (2007) Fast automated cell phenotype image classification. BMC Bioinformatics, 8, 110.
    • (2007) BMC Bioinformatics , vol.8 , pp. 110
    • Hamilton, N.A.1
  • 7
    • 0018466704 scopus 로고
    • Statistical and Structural Approaches to Texture
    • IEEE
    • Haralick, R. M. (1979) Statistical and Structural Approaches to Texture. In Proceedings of the IEEE, Vol. 67. IEEE, pp. 786-804.
    • (1979) Proceedings of the IEEE , vol.67 , pp. 786-804
    • Haralick, R.M.1
  • 8
    • 78649756877 scopus 로고    scopus 로고
    • Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
    • Hayat, M. and Khan, A. (2011) Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J. Theor. Biol., 271, 10-17.
    • (2011) J. Theor. Biol. , vol.271 , pp. 10-17
    • Hayat, M.1    Khan, A.2
  • 9
    • 3142710036 scopus 로고    scopus 로고
    • Automated interpretation of subcellular patterns from immunofluorescence microscopy
    • Hu, Y. and Murphy, R. F. (2004) Automated interpretation of subcellular patterns from immunofluorescence microscopy. J. Immunol. Methods, 290, 93-105.
    • (2004) J. Immunol. Methods , vol.290 , pp. 93-105
    • Hu, Y.1    Murphy, R.F.2
  • 10
    • 43049171623 scopus 로고    scopus 로고
    • Machine learning based adaptive watermark decoding in view of an anticipated attack
    • Khan, A. et al. (2008) Machine learning based adaptive watermark decoding in view of an anticipated attack. Patt. Recognit., 41, 2594-2610.
    • (2008) Patt. Recognit. , vol.41 , pp. 2594-2610
    • Khan, A.1
  • 11
    • 79959741759 scopus 로고    scopus 로고
    • CE-PLoc: an ensemble classifier for predicting protein subcellular locations by fusing different modes of Pseudo amino acid composition
    • Khan, A. et al. (2011) CE-PLoc: an ensemble classifier for predicting protein subcellular locations by fusing different modes of Pseudo amino acid composition. Comput. Biol. Chem., 35, 218-229.
    • (2011) Comput. Biol. Chem. , vol.35 , pp. 218-229
    • Khan, A.1
  • 12
    • 36949037952 scopus 로고    scopus 로고
    • Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization
    • Lin, C. -C. et al. (2007) Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization. Bioinformatics, 23, 3374-3381.
    • (2007) Bioinformatics , vol.23 , pp. 3374-3381
    • Lin, C.-C.1
  • 13
    • 34247342752 scopus 로고    scopus 로고
    • Combining support vector machines using genetic programming
    • Majid, A. et al. (2006) Combining support vector machines using genetic programming. Int. J. Hybrid Intell. Syst., 3, 109-125.
    • (2006) Int. J. Hybrid Intell. Syst. , vol.3 , pp. 109-125
    • Majid, A.1
  • 14
    • 0034564140 scopus 로고    scopus 로고
    • Towards a systematics for protein subcellular location: quantitative description of protein localization patterns and automated analysis of fluorescence microscope images
    • AAAI Press, La Jolla/San Diego, CA, USA
    • Murphy, R. F. et al. (2000) Towards a systematics for protein subcellular location: quantitative description of protein localization patterns and automated analysis of fluorescence microscope images. In Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology. AAAI Press, La Jolla/San Diego, CA, USA, pp. 251-259.
    • (2000) Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology , pp. 251-259
    • Murphy, R.F.1
  • 16
    • 0141921564 scopus 로고    scopus 로고
    • Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images
    • Murphy, R. F. et al. (2003) Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Signal Process., 35, 311-321.
    • (2003) J. VLSI Signal Process. , vol.35 , pp. 311-321
    • Murphy, R.F.1
  • 18
    • 44349190845 scopus 로고    scopus 로고
    • A reliable method for cell phenotype image classification
    • Nanni, L. and Lumini, A. (2008) A reliable method for cell phenotype image classification. Art. Intell. Med., 43, 87-97.
    • (2008) Art. Intell. Med. , vol.43 , pp. 87-97
    • Nanni, L.1    Lumini, A.2
  • 19
    • 79952202651 scopus 로고    scopus 로고
    • Novel features for automated cell phenotype image classification
    • Nanni, L. et al. (2010a) Novel features for automated cell phenotype image classification. Adv. Comput. Biol. Adv. Exp. Med. Biol., 680, 207-213.
    • (2010) Adv. Comput. Biol. Adv. Exp. Med. Biol. , vol.680 , pp. 207-213
    • Nanni, L.1
  • 21
    • 71749110909 scopus 로고    scopus 로고
    • Fusion of systems for automated cell phenotype image classification
    • Nanni, L. et al. (2010c) Fusion of systems for automated cell phenotype image classification. Exp. Syst. Appl., 37, 1556-1562.
    • (2010) Exp. Syst. Appl. , vol.37 , pp. 1556-1562
    • Nanni, L.1
  • 22
    • 0029669420 scopus 로고    scopus 로고
    • Acomparative study of texture measures with classification based on feature distribution
    • Ojala, T. et al. (1996) Acomparative study of texture measures with classification based on feature distribution. Patt. Recognit., 29, 51-59.
    • (1996) Patt. Recognit. , vol.29 , pp. 51-59
    • Ojala, T.1
  • 23
    • 33947684906 scopus 로고    scopus 로고
    • Adaptive multiresolution techniques for subcellular protein location classification
    • Srinivasa, G. et al. (2006) Adaptive multiresolution techniques for subcellular protein location classification. IEEE Int. Conf. Acoustics Speech Signal Process, 5, 14-19.
    • (2006) IEEE Int. Conf. Acoustics Speech Signal Process , vol.5 , pp. 14-19
    • Srinivasa, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.