메뉴 건너뛰기




Volumn 32, Issue 14, 2016, Pages 2184-2192

Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BAYES THEOREM; BIOLOGY; CELL ORGANELLE; FLUORESCENT ANTIBODY TECHNIQUE; HUMAN; IMMUNOHISTOCHEMISTRY; PROCEDURES; PROTEIN TRANSPORT; SUPERVISED MACHINE LEARNING;

EID: 84992437440     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw219     Document Type: Article
Times cited : (29)

References (32)
  • 1
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland, M.V. and Murphy, R.F. (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 17, 1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 2
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M.R. et al. (2004) Learning multi-label scene classification. Pattern Recogn., 37, 1757-1771.
    • (2004) Pattern Recogn. , vol.37 , pp. 1757-1771
    • Boutell, M.R.1
  • 3
    • 33747128180 scopus 로고    scopus 로고
    • Large scale transductive SVMs
    • Collobert, R. et al. (2006) Large scale transductive SVMs. J. Mach. Learn. Res., 7, 1687-1712.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1687-1712
    • Collobert, R.1
  • 4
    • 33748944288 scopus 로고    scopus 로고
    • Predicting protein subcellular location by fusing multiple classifiers
    • Chou, K.C. and Shen, H.B. (2006) Predicting protein subcellular location by fusing multiple classifiers. J. Cell Biochem., 99, 517-527.
    • (2006) J. Cell Biochem. , vol.99 , pp. 517-527
    • Chou, K.C.1    Shen, H.B.2
  • 5
    • 39449105071 scopus 로고    scopus 로고
    • Cell-PLoc: A package of web servers for predicting subcellular localization of proteins in various organisms
    • Chou, K.C. and Shen, H.B. (2008) Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 3, 153-162.
    • (2008) Nat. Protoc. , vol.3 , pp. 153-162
    • Chou, K.C.1    Shen, H.B.2
  • 6
    • 0004116989 scopus 로고    scopus 로고
    • MIT Press, Cambridge, Massachusetts (United States
    • Cormen, T.H. (2009) Introduction to Algorithms. MIT Press, Cambridge, Massachusetts (United States).
    • (2009) Introduction to Algorithms
    • Cormen, T.H.1
  • 7
    • 0033923370 scopus 로고    scopus 로고
    • Lysosome-related organelles
    • Dell'Angelica, E. et al. (2000) Lysosome-related organelles. Faseb J., 14, 1265-1278.
    • (2000) Faseb J. , vol.14 , pp. 1265-1278
    • Dell'Angelica, E.1
  • 8
    • 84992344115 scopus 로고    scopus 로고
    • Belief net structure learning from uncertain interventions
    • Eaton, D. and Murphy, K. (2007) Belief net structure learning from uncertain interventions. J. Mach. Learn. Res, 1, 1-48.
    • (2007) J. Mach. Learn. Res , vol.1 , pp. 1-48
    • Eaton, D.1    Murphy, K.2
  • 9
    • 33646473345 scopus 로고    scopus 로고
    • A mammalian organelle map by protein correlation profiling
    • Foster, L.J. et al. (2006) A mammalian organelle map by protein correlation profiling. Cell, 125, 187-199.
    • (2006) Cell , vol.125 , pp. 187-199
    • Foster, L.J.1
  • 10
    • 33845760114 scopus 로고    scopus 로고
    • Automated subcellular location determination and high-throughput microscopy
    • Glory, E. and Murphy, R.F. (2007) Automated subcellular location determination and high-throughput microscopy. Dev. Cell, 12, 7-16.
    • (2007) Dev. Cell , vol.12 , pp. 7-16
    • Glory, E.1    Murphy, R.F.2
  • 11
    • 0015680481 scopus 로고
    • Textural features for image classification
    • Haralick, R.M. et al. (1973) Textural features for image classification. IEEE Trans. Syst. Man Cybern., 6, 610-621.
    • (1973) IEEE Trans. Syst. Man Cybern. , vol.6 , pp. 610-621
    • Haralick, R.M.1
  • 12
    • 3142710036 scopus 로고    scopus 로고
    • Automated interpretation of subcellular patterns from immunofluorescencemicroscopy
    • Hu, Y. and Murphy, R.F. (2004) Automated interpretation of subcellular patterns from immunofluorescencemicroscopy. J. Immunol.Methods, 290, 93-105.
    • (2004) J. Immunol.Methods , vol.290 , pp. 93-105
    • Hu, Y.1    Murphy, R.F.2
  • 13
    • 84862816654 scopus 로고    scopus 로고
    • Logistic label propagation
    • Kobayashi, T. et al. (2012) Logistic label propagation. Pattern Recogn. Lett, 33, 580-588.
    • (2012) Pattern Recogn. Lett , vol.33 , pp. 580-588
    • Kobayashi, T.1
  • 14
    • 84869389633 scopus 로고    scopus 로고
    • Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization
    • Komor, A.C. et al. (2012) Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization. J. Am. Chem. Soc, 134, 19223-19233.
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 19223-19233
    • Komor, A.C.1
  • 15
    • 84873289445 scopus 로고    scopus 로고
    • Transductive multilabel learning via label set propagation
    • Kong, X. et al. (2013) Transductive multilabel learning via label set propagation. IEEE T. Knowl. Data En, 25, 704-719.
    • (2013) IEEE T. Knowl. Data en , vol.25 , pp. 704-719
    • Kong, X.1
  • 16
    • 84870595917 scopus 로고    scopus 로고
    • Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas
    • Li, J. et al. (2012) Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas. PLoS One, 7, 0050514.
    • (2012) PLoS One , vol.7 , pp. 0050514
    • Li, J.1
  • 18
    • 36249007597 scopus 로고    scopus 로고
    • Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
    • Li, M. and Zhou, Z.H. (2007) Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man. Cybern. A, 37, 1088-1098.
    • (2007) IEEE Trans. Syst. Man. Cybern. A , vol.37 , pp. 1088-1098
    • Li, M.1    Zhou, Z.H.2
  • 19
    • 80051619455 scopus 로고    scopus 로고
    • A boosted co-training algorithm for human action recognition
    • Liu, C. and Yuen, P.C. (2011) A boosted co-training algorithm for human action recognition. IEEE Trans. Circuits Syst. Video Technol., 21, 1203-1213.
    • (2011) IEEE Trans. Circuits Syst. Video Technol. , vol.21 , pp. 1203-1213
    • Liu, C.1    Yuen, P.C.2
  • 20
    • 34249102504 scopus 로고    scopus 로고
    • Classification in networked data: A toolkit and a univariate case study
    • Macskassy, S.A. and Provost, F. (2007) Classification in networked data: a toolkit and a univariate case study. J. Mach. Learn. Res., 8, 935-983.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 935-983
    • Macskassy, S.A.1    Provost, F.2
  • 21
    • 0040908393 scopus 로고
    • Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis
    • McLachlan, G.J. (1975) Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis. J. Am. Stat. Assoc., 70, 365-369.
    • (1975) J. Am. Stat. Assoc. , vol.70 , pp. 365-369
    • McLachlan, G.J.1
  • 22
    • 48149110492 scopus 로고    scopus 로고
    • Local binary patterns for a hybrid fingerprint matcher
    • Nanni, L. and Lumini, A. (2008) Local binary patterns for a hybrid fingerprint matcher. Pattern Recogn., 41, 3461-3466.
    • (2008) Pattern Recogn. , vol.41 , pp. 3461-3466
    • Nanni, L.1    Lumini, A.2
  • 23
    • 49849090542 scopus 로고    scopus 로고
    • A framework for the automated analysis of subcellular patterns in human protein atlas images
    • Newberg, J. and Murphy, R.F. (2008) A framework for the automated analysis of subcellular patterns in human protein atlas images. J. Proteome Res., 7, 2300-2308.
    • (2008) J. Proteome Res. , vol.7 , pp. 2300-2308
    • Newberg, J.1    Murphy, R.F.2
  • 24
    • 79954501377 scopus 로고    scopus 로고
    • MemLoci: Predicting subcellular localization of membrane proteins in eukaryotes
    • Pierleoni, A. et al. (2011) MemLoci: predicting subcellular localization of membrane proteins in eukaryotes. Bioinformatics, 27, 1224-1230.
    • (2011) Bioinformatics , vol.27 , pp. 1224-1230
    • Pierleoni, A.1
  • 25
    • 84925368172 scopus 로고    scopus 로고
    • Scalable multi-output label prediction: From classifier chains to classifier trellises
    • Read, J. et al. (2015) Scalable multi-output label prediction: From classifier chains to classifier trellises. Pattern Recogn., 48, 2096-2109.
    • (2015) Pattern Recogn. , vol.48 , pp. 2096-2109
    • Read, J.1
  • 26
    • 84899529206 scopus 로고    scopus 로고
    • Protein (multi-) location prediction: Using location inter-dependencies in a probabilistic framework
    • Simha, R. and Shatkay, H. (2014) Protein (multi-) location prediction: using location inter-dependencies in a probabilistic framework. Algorithms Mol. Biol, 9, 8.
    • (2014) Algorithms Mol. Biol , vol.9 , pp. 8
    • Simha, R.1    Shatkay, H.2
  • 27
    • 84875701652 scopus 로고    scopus 로고
    • Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells
    • Stadler, C. et al. (2013) Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods, 10, 315-323.
    • (2013) Nat. Methods , vol.10 , pp. 315-323
    • Stadler, C.1
  • 28
    • 84920269464 scopus 로고    scopus 로고
    • Tissue-based map of the human proteome
    • Uhlen, M. et al. (2015) Tissue-based map of the human proteome. Science, 347, 1260419.
    • (2015) Science , vol.347 , pp. 1260419
    • Uhlen, M.1
  • 29
    • 84883001258 scopus 로고    scopus 로고
    • Multilabel learning via random label selection for protein subcellular multilocations prediction
    • Wang, X. and Li, G.Z. (2013) Multilabel learning via random label selection for protein subcellular multilocations prediction. IEEE ACM Trans. Comput. Bioinform., 10, 436-446.
    • (2013) IEEE ACM Trans. Comput. Bioinform. , vol.10 , pp. 436-446
    • Wang, X.1    Li, G.Z.2
  • 30
    • 84880982053 scopus 로고    scopus 로고
    • An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues
    • Xu, Y.Y. et al. (2013) An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Bioinformatics, 29, 2032-2040.
    • (2013) Bioinformatics , vol.29 , pp. 2032-2040
    • Xu, Y.Y.1
  • 31
    • 84929144235 scopus 로고    scopus 로고
    • Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning
    • Xu, Y.Y. et al. (2015) Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Bioinformatics, 31, 1111-1119.
    • (2015) Bioinformatics , vol.31 , pp. 1111-1119
    • Xu, Y.Y.1
  • 32
    • 84870860627 scopus 로고    scopus 로고
    • Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features
    • Yu, D. et al. (2012) Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features. IEEE Trans. Nanobiosci., 11, 375-385.
    • (2012) IEEE Trans. Nanobiosci. , vol.11 , pp. 375-385
    • Yu, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.