메뉴 건너뛰기




Volumn 32, Issue 1, 2016, Pages 114-121

Human cell structure-driven model construction for predicting protein subcellular location from biological images

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN; PROTEOME;

EID: 84959870798     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv521     Document Type: Article
Times cited : (21)

References (41)
  • 1
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland, M. V. et al. (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry, 33, 366-375.
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1
  • 2
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland, M. V. and Murphy, R. F. (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 17, 1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 3
    • 84904764792 scopus 로고    scopus 로고
    • The emergence of proteome-wide technologies: Systematic analysis of proteins comes of age
    • Breker, M. and Schuldiner, M. (2014) The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nat. Rev. Mol. Cell Biol., 15, 453-464.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 453-464
    • Breker, M.1    Schuldiner, M.2
  • 4
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang, C. C. and Lin, C. J. (2011) LIBSVM: A library for support vector machines. ACM Trans. Intel. Syst. Technol., 2, 1889-1918.
    • (2011) ACM Trans. Intel. Syst. Technol. , vol.2 , pp. 1889-1918
    • Chang, C.C.1    Lin, C.J.2
  • 5
    • 34547650901 scopus 로고    scopus 로고
    • A multiresolution approach to automated classification of protein subcellular location images
    • Chebira, A. et al. (2007) A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinformatics, 8, 5.
    • (2007) BMC Bioinformatics , vol.8 , pp. 5
    • Chebira, A.1
  • 6
    • 77956181150 scopus 로고    scopus 로고
    • Prediction of protein subcellular localization by weighted gene ontology terms
    • Chi, S. M. (2010) Prediction of protein subcellular localization by weighted gene ontology terms. Biochem. Biophys. Res. Commun., 399, 402-405.
    • (2010) Biochem. Biophys. Res. Commun. , vol.399 , pp. 402-405
    • Chi, S.M.1
  • 7
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo-amino acid composition
    • Chou, K. C. (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 43, 246-255.
    • (2001) Proteins , vol.43 , pp. 246-255
    • Chou, K.C.1
  • 8
    • 84883467254 scopus 로고    scopus 로고
    • Determining the subcellular location of new proteins from microscope images using local features
    • Coelho, L. P. et al. (2013) Determining the subcellular location of new proteins from microscope images using local features. Bioinformatics, 29, 2343-2349.
    • (2013) Bioinformatics , vol.29 , pp. 2343-2349
    • Coelho, L.P.1
  • 9
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich, T. G. and Bakiri, G. (1995) Solving multiclass learning problems via error-correcting output codes. Artif. Intell., 2, 24.
    • (1995) Artif. Intell. , vol.2 , pp. 24
    • Dietterich, T.G.1    Bakiri, G.2
  • 10
    • 34447532140 scopus 로고    scopus 로고
    • Boosted landmarks of contextual descriptors and forest-ECOC: A novel framework to detect and classify objects in cluttered scenes
    • Escalera, S. et al. (2007) Boosted landmarks of contextual descriptors and forest-ECOC: A novel framework to detect and classify objects in cluttered scenes. Pattern Recognit. Lett., 28, 1759-1768.
    • (2007) Pattern Recognit. Lett. , vol.28 , pp. 1759-1768
    • Escalera, S.1
  • 11
    • 84871533042 scopus 로고    scopus 로고
    • On the decoding process in ternary error-correcting output codes
    • Escalera, S. et al. (2010) On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell., 32, 120-134.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , pp. 120-134
    • Escalera, S.1
  • 12
    • 33845760114 scopus 로고    scopus 로고
    • Automated subcellular location determination and high-throughput microscopy
    • Glory, E. and Murphy, R. F. (2007) Automated subcellular location determination and high-throughput microscopy. Dev. Cell., 12, 10.
    • (2007) Dev. Cell. , vol.12 , pp. 10
    • Glory, E.1    Murphy, R.F.2
  • 13
    • 0242628975 scopus 로고    scopus 로고
    • Feature reduction for improved recognition of subcellular location patterns in fluorescencemicroscope images
    • Huang, K. et al. (2003) Feature reduction for improved recognition of subcellular location patterns in fluorescencemicroscope images. Proc. SPIE, 4962, 307-318.
    • (2003) Proc. SPIE , vol.4962 , pp. 307-318
    • Huang, K.1
  • 14
    • 79551655554 scopus 로고    scopus 로고
    • On position-specific scoring matrix for protein function prediction
    • Jeong, J. C. et al. (2011) On position-specific scoring matrix for protein function prediction. IEEE ACM Trans. Comput. Bi., 8, 308-315.
    • (2011) IEEE ACM Trans. Comput. Bi. , vol.8 , pp. 308-315
    • Jeong, J.C.1
  • 15
    • 84919941278 scopus 로고    scopus 로고
    • Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers
    • Kumar, A. et al. (2014) Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers. Proc. Natl. Acad. Sci. USA, 111, 18249-18254.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 18249-18254
    • Kumar, A.1
  • 16
    • 84863505983 scopus 로고    scopus 로고
    • Protein subcellular location pattern classification in cellular images using latent discriminative models
    • Li, J. Y. et al. (2012) Protein subcellular location pattern classification in cellular images using latent discriminative models. Bioinformatics, 28, I32-I39.
    • (2012) Bioinformatics , vol.28 , pp. I32-I39
    • Li, J.Y.1
  • 17
    • 79551656246 scopus 로고    scopus 로고
    • Discriminative motif finding for predicting protein subcellular localization
    • Lin, T. H. et al. (2011) Discriminative motif finding for predicting protein subcellular localization. IEEE ACM Trans. Comput. Bi., 8, 441-451.
    • (2011) IEEE ACM Trans. Comput. Bi. , vol.8 , pp. 441-451
    • Lin, T.H.1
  • 18
    • 84927690405 scopus 로고    scopus 로고
    • View-centralized multi-atlas classification for Alzheimer's disease diagnosis
    • Liu, M. et al. (2015) View-centralized multi-atlas classification for Alzheimer's disease diagnosis. Hum. Brain Mapp., 36, 1847-1865.
    • (2015) Hum. Brain Mapp. , vol.36 , pp. 1847-1865
    • Liu, M.1
  • 19
    • 84990982240 scopus 로고    scopus 로고
    • Joint binary classifier learning for ECOC-based multiclass classification
    • Liu, M. et al. (2015) Joint binary classifier learning for ECOC-based multiclass classification. IEEE Trans. Pattern Anal. Mach. Intell., 99. doi: 10. 1109/TPAMI. 2015. 2430325.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , pp. 99
    • Liu, M.1
  • 20
    • 20444460289 scopus 로고    scopus 로고
    • MicroRNA expression profiles classify human cancers
    • Lu, J. et al. (2005) MicroRNA expression profiles classify human cancers. Nature, 435, 834-838.
    • (2005) Nature , vol.435 , pp. 834-838
    • Lu, J.1
  • 21
    • 0141921564 scopus 로고    scopus 로고
    • Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images
    • Murphy, R. F. et al. (2003) Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. Vlsi. Sig. Proc. Syst., 35, 311-321.
    • (2003) J. VLSI. Sig. Proc. Syst. , vol.35 , pp. 311-321
    • Murphy, R.F.1
  • 22
    • 77953363893 scopus 로고    scopus 로고
    • Local binary patterns variants as texture descriptors for medical image analysis
    • Nanni, L. et al. (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med., 49, 117-125.
    • (2010) Artif. Intell. Med. , vol.49 , pp. 117-125
    • Nanni, L.1
  • 23
    • 49849090542 scopus 로고    scopus 로고
    • A framework for the automated analysis of subcellular patterns in human protein atlas images
    • Newberg, J. and Murphy, R. F. (2008) A framework for the automated analysis of subcellular patterns in human protein atlas images. J. Proteome Res., 7, 2300-2308.
    • (2008) J. Proteome Res. , vol.7 , pp. 2300-2308
    • Newberg, J.1    Murphy, R.F.2
  • 24
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • Nigam, K. et al. (2000) Text classification from labeled and unlabeled documents using EM. Mach. Learn., 39, 103-134.
    • (2000) Mach. Learn. , vol.39 , pp. 103-134
    • Nigam, K.1
  • 25
    • 84880751198 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distributions
    • Ojala, T. et al. (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit., 29, 9.
    • (1996) Pattern Recognit. , vol.29 , pp. 9
    • Ojala, T.1
  • 26
    • 84859768151 scopus 로고    scopus 로고
    • Bioimage informatics: A new category in Bioinformatics
    • Peng, H. et al. (2012) Bioimage informatics: A new category in Bioinformatics. Bioinformatics, 28, 1057.
    • (2012) Bioinformatics , vol.28 , pp. 1057
    • Peng, H.1
  • 27
    • 79954501377 scopus 로고    scopus 로고
    • MemLoci: Predicting subcellular localization of membrane proteins in eukaryotes
    • Pierleoni, A. et al. (2011) MemLoci: Predicting subcellular localization of membrane proteins in eukaryotes. Bioinformatics, 27, 1224-1230.
    • (2011) Bioinformatics , vol.27 , pp. 1224-1230
    • Pierleoni, A.1
  • 28
    • 57149110826 scopus 로고    scopus 로고
    • The human protein atlas-a tool for pathology
    • Ponten, F. et al. (2008) The human protein atlas-a tool for pathology. J. Pathol., 216, 387-393.
    • (2008) J. Pathol. , vol.216 , pp. 387-393
    • Ponten, F.1
  • 29
    • 33645963453 scopus 로고    scopus 로고
    • Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes
    • Pujol, O. et al. (2006) Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell., 28, 1007-1012.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 1007-1012
    • Pujol, O.1
  • 31
    • 77952634397 scopus 로고    scopus 로고
    • Enhanced local texture feature sets for face recognition under difficult lighting conditions
    • Tan, X. Y. and Triggs, B. (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process, 19, 1635-1650.
    • (2010) IEEE Trans. Image Process , vol.19 , pp. 1635-1650
    • Tan, X.Y.1    Triggs, B.2
  • 32
    • 29244477844 scopus 로고    scopus 로고
    • A human protein atlas for normal and cancer tissues based on antibody proteomics
    • Uhlen, M. et al. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteomics, 4, 1920-1932.
    • (2005) Mol. Cell. Proteomics , vol.4 , pp. 1920-1932
    • Uhlen, M.1
  • 33
    • 84883001258 scopus 로고    scopus 로고
    • Multi-label learning via random label selection for protein subcellular multi-locations prediction
    • Wang, X. and Li, G. Z. (2013) Multi-label learning via random label selection for protein subcellular multi-locations prediction. IEEE ACM Trans. Comput. Biol, 10, 436-446.
    • (2013) IEEE ACM Trans. Comput. Biol , vol.10 , pp. 436-446
    • Wang, X.1    Li, G.Z.2
  • 34
    • 37549013404 scopus 로고    scopus 로고
    • MultiK-MHKS: A novel multiple kernel learning algorithm
    • Wang, Z. et al. (2008) MultiK-MHKS: A novel multiple kernel learning algorithm. IEEE Trans. Pattern Anal. Mach. Intell., 30, 348-353.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , pp. 348-353
    • Wang, Z.1
  • 35
    • 84880982053 scopus 로고    scopus 로고
    • An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues
    • Xu, Y. Y. et al. (2013) An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Bioinformatics, 29, 2032-2040.
    • (2013) Bioinformatics , vol.29 , pp. 2032-2040
    • Xu, Y.Y.1
  • 36
    • 84929144235 scopus 로고    scopus 로고
    • Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning
    • Xu, Y. Y. et al. (2015) Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Bioinformatics, 31, 1111-1119.
    • (2015) Bioinformatics , vol.31 , pp. 1111-1119
    • Xu, Y.Y.1
  • 37
    • 84894049998 scopus 로고    scopus 로고
    • Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features
    • Yang, F. et al. (2014) Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features. Neurocomputing, 131, 113-123.
    • (2014) Neurocomputing , vol.131 , pp. 113-123
    • Yang, F.1
  • 38
    • 84856466037 scopus 로고    scopus 로고
    • Subcellular localization prediction through boosting association rules
    • Yoon, Y. and Lee, G. G. (2012) Subcellular localization prediction through boosting association rules. IEEE ACM Trans. Comput. Biol., 9, 609-618.
    • (2012) IEEE ACM Trans. Comput. Biol. , vol.9 , pp. 609-618
    • Yoon, Y.1    Lee, G.G.2
  • 39
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Zhang, D. et al. (2011) Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage, 55, 856-867.
    • (2011) Neuroimage , vol.55 , pp. 856-867
    • Zhang, D.1
  • 40
    • 33748796057 scopus 로고    scopus 로고
    • Prediction of protein subcellular location using hydrophobic patterns of amino acid sequence
    • Zhang, T. L. et al. (2006) Prediction of protein subcellular location using hydrophobic patterns of amino acid sequence. Comput. Biol. Chem., 30, 367-371.
    • (2006) Comput. Biol. Chem. , vol.30 , pp. 367-371
    • Zhang, T.L.1
  • 41
    • 72549094674 scopus 로고    scopus 로고
    • Multi label learning for prediction of human protein subcellular localizations
    • Zhu, L. et al. (2009) Multi label learning for prediction of human protein subcellular localizations. Protein J., 28, 384-390.
    • (2009) Protein J. , vol.28 , pp. 384-390
    • Zhu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.