메뉴 건너뛰기




Volumn 345, Issue , 2016, Pages 65-80

Protein subcellular localization of fluorescence microscopy images: Employing new statistical and Texton based image features and SVM based ensemble classification

Author keywords

Ensemble classification; Fluorescence microscopy; Majority voting; Protein; Subcellular localization; SVM

Indexed keywords

EXTRACTION; FEATURE EXTRACTION; FLUORESCENCE; FLUORESCENCE MICROSCOPY; FORECASTING; IMAGE PROCESSING; IMAGE SEGMENTATION; OPTICAL CHARACTER RECOGNITION; PATTERN RECOGNITION; PROTEINS;

EID: 84960172820     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2016.01.064     Document Type: Article
Times cited : (28)

References (51)
  • 1
    • 84862651693 scopus 로고    scopus 로고
    • Mito-GSAAC: Mitochondria prediction using genetic ensemble classifier and split amino acid composition
    • T.H. Afridi, A. Khan, Y.S. Lee Mito-GSAAC: mitochondria prediction using genetic ensemble classifier and split amino acid composition Amino Acids 42 2012 1443 1454
    • (2012) Amino Acids , vol.42 , pp. 1443-1454
    • Afridi, T.H.1    Khan, A.2    Lee, Y.S.3
  • 3
    • 84901373902 scopus 로고    scopus 로고
    • Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology
    • M.R. Bakhtiarizadeh, M. Moradi-Shahrbabak, M. Ebrahimi, E. Ebrahimie Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology J. Theory Biol. 356 2014 213 222
    • (2014) J. Theory Biol. , vol.356 , pp. 213-222
    • Bakhtiarizadeh, M.R.1    Moradi-Shahrbabak, M.2    Ebrahimi, M.3    Ebrahimie, E.4
  • 4
    • 84880432282 scopus 로고    scopus 로고
    • Performance of global-local hybrid ensemble versus boosting and bagging ensembles
    • D. Baumgartner, G. Serpen Performance of global-local hybrid ensemble versus boosting and bagging ensembles Int. J. Mach. Learn. Cybernet. 4 2013 301 317
    • (2013) Int. J. Mach. Learn. Cybernet. , vol.4 , pp. 301-317
    • Baumgartner, D.1    Serpen, G.2
  • 6
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • M.V. Boland, R.F. Murphy A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells Bioinform. 17 2001 1213 1223
    • (2001) Bioinform. , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 7
    • 84960184477 scopus 로고    scopus 로고
    • Classification of cancer cells based on Haralick's Coefficients using Multi-spectral images
    • 7th European Symposium on Biomedical Engineering, International Federation for Medical and Biological Engineering, Porto Carras, Chalkidiki, Greece
    • A. Chaddad, C. Tanougast, A. Dandache, A. Bouridane, J. Charara, A.A. Houseini Classification of cancer cells based on Haralick's Coefficients using Multi-spectral images 7th European Symposium on Biomedical Engineering, International Federation for Medical and Biological Engineering, Springer Verlag IFBME Proceedings Series Porto Carras, Chalkidiki, Greece 2010
    • (2010) Springer Verlag IFBME Proceedings Series
    • Chaddad, A.1    Tanougast, C.2    Dandache, A.3    Bouridane, A.4    Charara, J.5    Houseini, A.A.6
  • 10
    • 34547830883 scopus 로고    scopus 로고
    • Automated image analysis of protein localization in budding yeast
    • S.-C. Chen, T. Zhao, G.J. Gordon, R.F. Murphy Automated image analysis of protein localization in budding yeast Bioinformatics 23 2007 i66 i71
    • (2007) Bioinformatics , vol.23 , pp. i66-i71
    • Chen, S.-C.1    Zhao, T.2    Gordon, G.J.3    Murphy, R.F.4
  • 11
    • 84961292151 scopus 로고    scopus 로고
    • A weighted LS-SVM based learning system for time series forecasting
    • T.-T. Chen, S.-J. Lee A weighted LS-SVM based learning system for time series forecasting Inf. Sci. 299 2015 99 116
    • (2015) Inf. Sci. , vol.299 , pp. 99-116
    • Chen, T.-T.1    Lee, S.-J.2
  • 12
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
    • K.-C. Chou some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review) J. Theor. Biol. 273 2011 236 247
    • (2011) J. Theor. Biol. , vol.273 , pp. 236-247
    • Chou, K.-C.1
  • 13
    • 78650925686 scopus 로고    scopus 로고
    • Co-occurrence matrix and its statistical features as a new approach for face recognition
    • A. Eleyan, H. Demirel Co-occurrence matrix and its statistical features as a new approach for face recognition Turk J. Electr. Eng. Comput. Sci. 19 2011 97 107
    • (2011) Turk J. Electr. Eng. Comput. Sci. , vol.19 , pp. 97-107
    • Eleyan, A.1    Demirel, H.2
  • 14
    • 59649123088 scopus 로고    scopus 로고
    • Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition
    • D.N. Georgiou, T.E. Karakasidis, J.J. Nieto, A. Torres Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition J. Theory Biol. 257 2009 17 26
    • (2009) J. Theory Biol. , vol.257 , pp. 17-26
    • Georgiou, D.N.1    Karakasidis, T.E.2    Nieto, J.J.3    Torres, A.4
  • 15
    • 0003425664 scopus 로고    scopus 로고
    • Faculty of Engineering, Science and Mathematics, School of Electronics and Computer Science, University of Southampton
    • S.R. Gunn Support vector machines for classification and regression Faculty of Engineering, Science and Mathematics, School of Electronics and Computer Science, University of Southampton 1998
    • (1998) Support Vector Machines for Classification and Regression
    • Gunn, S.R.1
  • 17
    • 84922189584 scopus 로고    scopus 로고
    • Ensemble of extreme learning machine for remote sensing image classification
    • M. Han, B. Liu Ensemble of extreme learning machine for remote sensing image classification Neurocomput. 149 2015 65 70
    • (2015) Neurocomput. , vol.149 , pp. 65-70
    • Han, M.1    Liu, B.2
  • 18
    • 80054071147 scopus 로고    scopus 로고
    • MemHyb: Predicting membrane protein types by hybridizing SAAC and PSSM
    • M. Hayat, A. Khan MemHyb: Predicting membrane protein types by hybridizing SAAC and PSSM J. Theoret. Biol. 292 2012 93 102
    • (2012) J. Theoret. Biol. , vol.292 , pp. 93-102
    • Hayat, M.1    Khan, A.2
  • 19
    • 78649756877 scopus 로고    scopus 로고
    • Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
    • M. Hayat, A. Khan Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition J. Theory Biol. 271 2011 10 17
    • (2011) J. Theory Biol. , vol.271 , pp. 10-17
    • Hayat, M.1    Khan, A.2
  • 20
    • 84862763732 scopus 로고    scopus 로고
    • Prediction of membrane proteins using split amino acid and ensemble classification
    • M. Hayat, A. Khan, M. Yeasin Prediction of membrane proteins using split amino acid and ensemble classification Amino Acids 42 2012 2447 2460
    • (2012) Amino Acids , vol.42 , pp. 2447-2460
    • Hayat, M.1    Khan, A.2    Yeasin, M.3
  • 21
    • 79952929457 scopus 로고    scopus 로고
    • Separating theorem of samples in Banach space for support vector machine learning
    • Q. He, C. Wu Separating theorem of samples in Banach space for support vector machine learning Int. J. Mach. Learn. Cybernet. 2 2011 49 54
    • (2011) Int. J. Mach. Learn. Cybernet. , vol.2 , pp. 49-54
    • He, Q.1    Wu, C.2
  • 22
    • 84926393919 scopus 로고    scopus 로고
    • Predicting electrical evoked potential in optic nerve visual prostheses by using support vector regression and case-based prediction
    • J. Hu, J. Qi, Y. Peng, Q. Ren Predicting electrical evoked potential in optic nerve visual prostheses by using support vector regression and case-based prediction Inf. Sci. 290 2015 7 21
    • (2015) Inf. Sci. , vol.290 , pp. 7-21
    • Hu, J.1    Qi, J.2    Peng, Y.3    Ren, Q.4
  • 23
    • 0019723804 scopus 로고
    • A theory of preattentive texture discrimination based on first-order statistics of textons
    • B. Julesz A theory of preattentive texture discrimination based on first-order statistics of textons Biol. Cybernet. 41 1981 131 138
    • (1981) Biol. Cybernet. , vol.41 , pp. 131-138
    • Julesz, B.1
  • 24
    • 84902477992 scopus 로고    scopus 로고
    • Protein sub-nuclear localization prediction using SVM and Pfam domain information
    • R. Kumar, S. Jain, B. Kumari, M. Kumar Protein sub-nuclear localization prediction using SVM and Pfam domain information PLoS One 9 2014
    • (2014) PLoS One , vol.9
    • Kumar, R.1    Jain, S.2    Kumari, B.3    Kumar, M.4
  • 25
    • 0142088847 scopus 로고    scopus 로고
    • Texture classification using the support vector machines
    • S. Li, J.T. Kwok, H. Zhu, Y. Wang Texture classification using the support vector machines Pattern Recognit. 36 2003 2883 2893
    • (2003) Pattern Recognit. , vol.36 , pp. 2883-2893
    • Li, S.1    Kwok, J.T.2    Zhu, H.3    Wang, Y.4
  • 26
  • 27
    • 77954239142 scopus 로고    scopus 로고
    • A spectral graph theoretic approach to quantification and calibration of collective morphological differences in cell images
    • Y.-S. Lin, C.-C. Lin, Y.-S. Tsai, T.-C. Ku, Y.-H. Huang, C.-N. Hsu A spectral graph theoretic approach to quantification and calibration of collective morphological differences in cell images Bioinformatics 26 2010 i29 i37
    • (2010) Bioinformatics , vol.26 , pp. i29-i37
    • Lin, Y.-S.1    Lin, C.-C.2    Tsai, Y.-S.3    Ku, T.-C.4    Huang, Y.-H.5    Hsu, C.-N.6
  • 28
    • 84893704508 scopus 로고    scopus 로고
    • Imbalanced data classification using second-order cone programming support vector machines
    • S. Maldonado, J. López Imbalanced data classification using second-order cone programming support vector machines Pattern Recognit. 47 2014 2070 2079
    • (2014) Pattern Recognit. , vol.47 , pp. 2070-2079
    • Maldonado, S.1    López, J.2
  • 29
    • 80155143429 scopus 로고    scopus 로고
    • Multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization
    • S. Mei Multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization J. Theory Biol. 293 2012 121 130
    • (2012) J. Theory Biol. , vol.293 , pp. 121-130
    • Mei, S.1
  • 30
    • 79955564229 scopus 로고    scopus 로고
    • Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine
    • H. Mohabatkar, M.M. Beigi, A. Esmaeili Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine J. Theory Biol. 281 2011 18 23
    • (2011) J. Theory Biol. , vol.281 , pp. 18-23
    • Mohabatkar, H.1    Beigi, M.M.2    Esmaeili, A.3
  • 31
    • 71749110909 scopus 로고    scopus 로고
    • Fusion of systems for automated cell phenotype image Classification
    • L. Nanni, A. Lumini, Y.-S. Lin, C.-N. Hsu, C.-C. Lin Fusion of systems for automated cell phenotype image Classification Expert Syst. Appl. 37 2010 1556 1562
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1556-1562
    • Nanni, L.1    Lumini, A.2    Lin, Y.-S.3    Hsu, C.-N.4    Lin, C.-C.5
  • 32
    • 79952202651 scopus 로고    scopus 로고
    • Novel features for automated cell phenotype image classification
    • L. Nanni, S. Brahnam, A. Lumini Novel features for automated cell phenotype image classification Adv. Comput. Biol. 680 2010 207 213
    • (2010) Adv. Comput. Biol. , vol.680 , pp. 207-213
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 33
    • 44349190845 scopus 로고    scopus 로고
    • A reliable method for cell phenotype image classification
    • L. Nanni, A. Lumini A reliable method for cell phenotype image classification Artif. Intell. Med. 43 2008 87 97
    • (2008) Artif. Intell. Med. , vol.43 , pp. 87-97
    • Nanni, L.1    Lumini, A.2
  • 35
    • 84861818450 scopus 로고    scopus 로고
    • A simple method for improving local binary patterns by considering non-uniform patterns
    • L. Nanni, S. Brahnam, A. Lumini A simple method for improving local binary patterns by considering non-uniform patterns Pattern Recognit. 45 2012 3844 3852
    • (2012) Pattern Recognit. , vol.45 , pp. 3844-3852
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 36
    • 84902438284 scopus 로고    scopus 로고
    • Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange
    • M. Pulido, P. Melin, O. Castillo Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange Inf. Sci. 280 2014 188 204
    • (2014) Inf. Sci. , vol.280 , pp. 188-204
    • Pulido, M.1    Melin, P.2    Castillo, O.3
  • 37
    • 84873391224 scopus 로고    scopus 로고
    • Chapter four - Predicting G-protein-coupled receptors families using different physiochemical properties and pseudo amino acid composition
    • Z.u. Rehman, M.T. Mirza, A. Khan, H. Xhaard Chapter four - Predicting G-protein-coupled receptors families using different physiochemical properties and pseudo amino acid composition Methods Enzymol. 522 2013 61 79
    • (2013) Methods Enzymol. , vol.522 , pp. 61-79
    • Rehman, Z.U.1    Mirza, M.T.2    Khan, A.3    Xhaard, H.4
  • 38
    • 79953170185 scopus 로고    scopus 로고
    • G-protein coupled receptor prediction using pseudo-amino-acid composition and multiscale energy representation of different physiochemical properties
    • Z.u. Rehman, A. Khan G-protein coupled receptor prediction using pseudo-amino-acid composition and multiscale energy representation of different physiochemical properties Anal. Biochem. 412 2011 173 182
    • (2011) Anal. Biochem. , vol.412 , pp. 173-182
    • Rehman, Z.U.1    Khan, A.2
  • 39
    • 34548150226 scopus 로고    scopus 로고
    • Kernel PCA for similarity invariant shape recognition
    • H. Sahbi Kernel PCA for similarity invariant shape recognition Neurocomput. 70 2007 3034 3045
    • (2007) Neurocomput. , vol.70 , pp. 3034-3045
    • Sahbi, H.1
  • 40
    • 80051473208 scopus 로고    scopus 로고
    • Assessing the efficacy of low-level image content descriptors for computer-based fluorescence microscopy image analysis
    • L. Shamir Assessing the efficacy of low-level image content descriptors for computer-based fluorescence microscopy image analysis J. Microsc. 243 2011 284 292
    • (2011) J. Microsc. , vol.243 , pp. 284-292
    • Shamir, L.1
  • 41
    • 34447106453 scopus 로고    scopus 로고
    • Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition
    • J.-Y. Shi, S.-W. Zhang, Q. Pan, Y.-M. Cheng, J. Xie Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition Amino Acids 33 2007 69 74
    • (2007) Amino Acids , vol.33 , pp. 69-74
    • Shi, J.-Y.1    Zhang, S.-W.2    Pan, Q.3    Cheng, Y.-M.4    Xie, J.5
  • 42
    • 84855185013 scopus 로고    scopus 로고
    • Protein subcellular localization of fuorescence imagery using spatial and transform domain features
    • M. Tahir, A. Khan, A. Majid Protein subcellular localization of fuorescence imagery using spatial and transform domain features Bioinform. 28 2012 91 97
    • (2012) Bioinform. , vol.28 , pp. 91-97
    • Tahir, M.1    Khan, A.2    Majid, A.3
  • 43
    • 84885313661 scopus 로고    scopus 로고
    • Subcellular localization using fluorescence imagery: Utilizing ensemble classification with diverse feature extraction strategies and data balancing
    • M. Tahir, A. Khan, A. Majid, A. Lumini Subcellular localization using fluorescence imagery: Utilizing ensemble classification with diverse feature extraction strategies and data balancing Appl. Soft Comput. 13 2013 4231 4243
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4231-4243
    • Tahir, M.1    Khan, A.2    Majid, A.3    Lumini, A.4
  • 44
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V.N. Vapnik An overview of statistical learning theory IEEE Trans. Neural Netw. 10 1999 988 999
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 46
    • 84892373136 scopus 로고    scopus 로고
    • Sentiment classification: The contribution of ensemble learning
    • G. Wang, J. Sun, J. Ma, K. Xu, J. Gu Sentiment classification: The contribution of ensemble learning Decis. Support Syst. 57 2014 77 93
    • (2014) Decis. Support Syst. , vol.57 , pp. 77-93
    • Wang, G.1    Sun, J.2    Ma, J.3    Xu, K.4    Gu, J.5
  • 47
    • 84904761433 scopus 로고    scopus 로고
    • Review of protein subcellular localization prediction
    • Z. Wang, Q. Zou, Y. Jiang, Y. Ju, X. Zeng Review of protein subcellular localization prediction Curr. Bioinform. 9 2014 331 342
    • (2014) Curr. Bioinform. , vol.9 , pp. 331-342
    • Wang, Z.1    Zou, Q.2    Jiang, Y.3    Ju, Y.4    Zeng, X.5
  • 48
    • 84877944808 scopus 로고    scopus 로고
    • Phenotype recognition by curvelet transform and random subspace ensemble
    • B. Zhang, Y. Zhang, W. Lu, G. Han Phenotype recognition by curvelet transform and random subspace ensemble J. Appl. Math. Bioinform. 1 2011 79 103
    • (2011) J. Appl. Math. Bioinform. , vol.1 , pp. 79-103
    • Zhang, B.1    Zhang, Y.2    Lu, W.3    Han, G.4
  • 49
    • 43149104120 scopus 로고    scopus 로고
    • Using the concept of Chou's pseudo amino acid composition to predict protein subcellular localization: An approach by incorporating evolutionary information and von Neumann entropies
    • S.-W. Zhang, Y.-L. Zhang, H.-F. Yang, C.-H. Zhao, Q. Pan Using the concept of Chou's pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies Amino Acids 34 2008 565 572
    • (2008) Amino Acids , vol.34 , pp. 565-572
    • Zhang, S.-W.1    Zhang, Y.-L.2    Yang, H.-F.3    Zhao, C.-H.4    Pan, Q.5
  • 50
    • 84921052011 scopus 로고    scopus 로고
    • A fast algorithm for training support vector regression via smoothed primal function minimization
    • S. Zheng A fast algorithm for training support vector regression via smoothed primal function minimization Int. J. Mach. Learn. Cybernet. 6 2015 155 166
    • (2015) Int. J. Mach. Learn. Cybernet. , vol.6 , pp. 155-166
    • Zheng, S.1
  • 51
    • 84901263873 scopus 로고    scopus 로고
    • Predicting peroxidase subcellular location by hybridizing different descriptors of Chou' pseudo amino acid patterns
    • Y.-C. Zuo, Y. Peng, L. Liu, W. Chen, L. Yang, G.-L. Fan Predicting peroxidase subcellular location by hybridizing different descriptors of Chou' pseudo amino acid patterns Anal. Biochem. 458 2014 14 19
    • (2014) Anal. Biochem. , vol.458 , pp. 14-19
    • Zuo, Y.-C.1    Peng, Y.2    Liu, L.3    Chen, W.4    Yang, L.5    Fan, G.-L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.