메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages

Boosting accuracy of automated classification of fluorescence microscope images for location proteomics

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATED CLASSIFICATION SYSTEMS; CLASSIFICATION ERROR RATE; ENDOMEMBRANE COMPARTMENTS; FLUORESCENCE MICROSCOPE IMAGES; FLUORESCENCE MICROSCOPES; NEURAL NETWORK CLASSIFIER; PROTEIN SUBCELLULAR LOCATION; SUBCELLULAR LOCATION FEATURES;

EID: 13344280993     PISSN: 14712105     EISSN: None     Source Type: Journal    
DOI: 10.1186/1471-2105-5-78     Document Type: Article
Times cited : (121)

References (39)
  • 1
    • 0036468055 scopus 로고    scopus 로고
    • Structural proteomics: Developments in structure-to-function predictions
    • Norin M, Sundstrom M: Structural proteomics: developments in structure-to-function predictions. Trends Biotech 2002, 20:79-84.
    • (2002) Trends Biotech. , vol.20 , pp. 79-84
    • Norin, M.1    Sundstrom, M.2
  • 2
    • 0036898579 scopus 로고    scopus 로고
    • Protein microarrays and proteomics
    • Macbeath G: Protein microarrays and proteomics. Nature Genetics 2002, 32:526-532.
    • (2002) Nature Genetics , vol.32 , pp. 526-532
    • Macbeath, G.1
  • 3
    • 0033909566 scopus 로고    scopus 로고
    • Protein sorting signals and prediction of subcellular localization
    • Nakai K: Protein sorting signals and prediction of subcellular localization. Adv Protein Chem 2000, 54: 77-344.
    • (2000) Adv. Protein Chem. , vol.54 , pp. 277-344
    • Nakai, K.1
  • 4
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua S, Sun Z: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001, 17: 21-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 5
    • 0030614959 scopus 로고    scopus 로고
    • Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • von Heijne G, Nielsen H, Engelbrecht J, Brunak S: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997, 10: -6.
    • (1997) Protein Eng. , vol.10 , pp. 1-6
    • von Heijne, G.1    Nielsen, H.2    Engelbrecht, J.3    Brunak, S.4
  • 6
    • 0037195776 scopus 로고    scopus 로고
    • Using function domain composition and support vector machines for prediction of protein subcellular location
    • Chou K, Cai Y: Using function domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 2002, 277:45765-45769.
    • (2002) J. Biol. Chem. , vol.277 , pp. 45765-45769
    • Chou, K.1    Cai, Y.2
  • 7
    • 0036677029 scopus 로고    scopus 로고
    • Predicting protein cellular localization using a domain projection method
    • Mott R, Schultz J, Bork P, Ponting CP: Predicting protein cellular localization using a domain projection method. Genome Res 2002, 12:1168-1174.
    • (2002) Genome Res. , vol.12 , pp. 1168-1174
    • Mott, R.1    Schultz, J.2    Bork, P.3    Ponting, C.P.4
  • 8
    • 0034714135 scopus 로고    scopus 로고
    • A Bayesian system integrating expression data with sequence patterns for localizing proteins: Comprehensive application to the yeast genome
    • Drawid A, Gerstein M: A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome. J Mol Biol 2000, 301:1059-1075.
    • (2000) J. Mol. Biol. , vol.301 , pp. 1059-1075
    • Drawid, A.1    Gerstein, M.2
  • 9
    • 0036139314 scopus 로고    scopus 로고
    • A Neural Network Classifier Capable of Recognizing the Patterns of all Major Subcellular Structures in Fluorescence Microscope Images of HeLa Cells
    • Boland MV, Murphy RF: A Neural Network Classifier Capable of Recognizing the Patterns of all Major Subcellular Structures in Fluorescence Microscope Images of HeLa Cells. Bioinformatics 2001, 17:1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 10
    • 0036264252 scopus 로고    scopus 로고
    • Automated Recognition of Intracellular Organelles in Confocal Microscope Images
    • Danckaert A, Gonzalez-Couto E, Bollondi L, Thompson N, Hayes B: Automated Recognition of Intracellular Organelles in Confocal Microscope Images. Traffic 2002, 3:66-73.
    • (2002) Traffic , vol.3 , pp. 66-73
    • Danckaert, A.1    Gonzalez-Couto, E.2    Bollondi, L.3    Thompson, N.4    Hayes, B.5
  • 11
    • 84948706926 scopus 로고    scopus 로고
    • Automated Determination of Protein Subcellular Locations from 3D Fluorescence Microscope Images
    • Bethesda, MD, USA
    • Velliste M, Murphy RF: Automated Determination of Protein Subcellular Locations from 3D Fluorescence Microscope Images. 2002 IEEE International Symposium on Biomedical Imaging (ISBI-2002) Bethesda, MD, USA; 2002:867-870.
    • (2002) 2002 IEEE International Symposium on Biomedical Imaging (ISBI-2002) , pp. 867-870
    • Velliste, M.1    Murphy, R.F.2
  • 13
    • 0034564140 scopus 로고    scopus 로고
    • Towards a Systematics for Protein Subcellular Location: Quantitative Description of Protein Localization Patterns and Automated Analysis of Fluorescence Microscope Images
    • San Diego
    • Murphy RF, Boland MV, Velliste M: Towards a Systematics for Protein Subcellular Location: Quantitative Description of Protein Localization Patterns and Automated Analysis of Fluorescence Microscope Images. Eighth International Conference on Intelligent Systems for Molecular Biology Volume 8. San Diego; 2000:251-259.
    • (2000) Eighth International Conference on Intelligent Systems for Molecular Biology , vol.8 , pp. 251-259
    • Murphy, R.F.1    Boland, M.V.2    Velliste, M.3
  • 14
    • 0141921564 scopus 로고    scopus 로고
    • Robust Numerical Features for Description and Classification of Subcellular Location Patterns in Fluorescence Microscope Images
    • Murphy RF, Velliste M, Porreca G: Robust Numerical Features for Description and Classification of Subcellular Location Patterns in Fluorescence Microscope Images. J VLSI Sig Proc 2003, 35:311-321.
    • (2003) J. VLSI Sig. Proc. , vol.35 , pp. 311-321
    • Murphy, R.F.1    Velliste, M.2    Porreca, G.3
  • 15
    • 0242628975 scopus 로고    scopus 로고
    • Feature Reduction for Improved Recognition of Subcellular Location Patterns in Fluorescence Microscope Images
    • Huang K, Velliste M, Murphy RF: Feature Reduction for Improved Recognition of Subcellular Location Patterns in Fluorescence Microscope Images. Proc SPIE 2003, 4962:307-318.
    • (2003) Proc. SPIE , vol.4962 , pp. 307-318
    • Huang, K.1    Velliste, M.2    Murphy, R.F.3
  • 17
    • 0003991806 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • New York City, Wiley
    • Vapnik V: Statistical Learning Theory. New York City, Wiley; 1998.
    • (1998)
    • Vapnik, V.1
  • 18
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise Classification and Support Vector Machines
    • Edited by: Scholkopf B, Burges C and Smola A J. Cambridge, Massachusetts, MIT Press
    • Kressel U: Pairwise Classification and Support Vector Machines. Advances in Kernel Methods - Support Vector Learning Volume 15 Edited by: Scholkopf B, Burges C and Smola A J. Cambridge, Massachusetts, MIT Press; 1999:255-268.
    • (1999) Advances in Kernel Methods - Support Vector Learning Volume 15 , pp. 255-268
    • Kressel, U.1
  • 23
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • Bauer E, Kohavi R: An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning 1999, 36:525-536.
    • (1999) Machine Learning , vol.36 , pp. 525-536
    • Bauer, E.1    Kohavi, R.2
  • 25
    • 84865801454 scopus 로고    scopus 로고
    • Ensembles of learning machines
    • Edited by: Marinaro M and Tagliaferri R. Heidelberg, Germany., Springer-Verlag
    • Valentini G, Masulli F: Ensembles of learning machines. Neural Nets WIRN Vietri-02 Edited by: Marinaro M and Tagliaferri R. Heidelberg, Germany., Springer-Verlag; 2002:3-19.
    • (2002) Neural Nets WIRN Vietri-02 , pp. 3-19
    • Valentini, G.1    Masulli, F.2
  • 26
    • 40549127631 scopus 로고    scopus 로고
    • The Boosting Approach to Machine Learning: An Overview
    • MSRI workshop on Nonlinear estimation and Classification
    • Schapire RE: The Boosting Approach to Machine Learning: An Overview. MSRI workshop on Nonlinear estimation and Classification 2002.
    • (2002)
    • Schapire, R.E.1
  • 27
    • 0005783706 scopus 로고    scopus 로고
    • Classification and Regression using Mixtures of Experts
    • Department of Engineering, Jesus College Cambridge, U.K., University of Cambridge
    • Waterhouse SR: Classification and Regression using Mixtures of Experts. Department of Engineering, Jesus College Cambridge, U.K., University of Cambridge; 1997.
    • (1997)
    • Waterhouse, S.R.1
  • 29
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan MI, Jacobs RA: Hierarchical mixtures of experts and the EM algorithm. Neural Computation 1994, 6:181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 30
    • 84953735755 scopus 로고    scopus 로고
    • Fusion of multiple experts in multimodal biometric personal identity verification systems
    • 2002 IEEE International Workshop on Neural Networks for Signal Processing (NNSP 12)
    • Kittler J, Messer K: Fusion of multiple experts in multimodal biometric personal identity verification systems. 2002 IEEE International Workshop on Neural Networks for Signal Processing (NNSP 12) 2002:3-12.
    • (2002) , pp. 3-12
    • Kittler, J.1    Messer, K.2
  • 31
    • 0033065594 scopus 로고    scopus 로고
    • Towards objective selection of representative microscope images
    • Markey MK, Boland MV, Murphy RF: Towards objective selection of representative microscope images. Biophys J 1999, 76:2230-2237.
    • (1999) Biophys. J. , vol.76 , pp. 2230-2237
    • Markey, M.K.1    Boland, M.V.2    Murphy, R.F.3
  • 32
    • 0004255908 scopus 로고    scopus 로고
    • Machine Learning
    • WCB/McGraw-Hill
    • Mitchell TM: Machine Learning. WCB/McGraw-Hill; 1997.
    • (1997)
    • Mitchell, T.M.1
  • 33
    • 0024053929 scopus 로고
    • Complete discrete 2-d Gabor transforms by neural networks for image analysis and compression
    • Daugman JD: Complete discrete 2-d Gabor transforms by neural networks for image analysis and compression. IEEE Trans Acoustics Speech Sig Proc 1988, 36:1169-1179.
    • (1988) IEEE Trans. Acoustics Speech Sig. Proc. , vol.36 , pp. 1169-1179
    • Daugman, J.D.1
  • 34
    • 84990575058 scopus 로고
    • Orthonormal Bases of Compactly Supported Wavelets
    • Daubechies I: Orthonormal Bases of Compactly Supported Wavelets. Comm Pure Appl Math 1988, 41:909-996.
    • (1988) Comm. Pure Appl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 37
    • 0242410975 scopus 로고    scopus 로고
    • Location proteomics - Building subcellular location trees from high resolution 3D fluorescence microscope images of randomly-tagged proteins
    • Chen X, Velliste M, Weinstein S, Jarvik JW, Murphy RF: Location proteomics - Building subcellular location trees from high resolution 3D fluorescence microscope images of randomly-tagged proteins. Proc SPIE 2003, 4962:298-306.
    • (2003) Proc. SPIE , vol.4962 , pp. 298-306
    • Chen, X.1    Velliste, M.2    Weinstein, S.3    Jarvik, J.W.4    Murphy, R.F.5
  • 38
    • 5044234815 scopus 로고    scopus 로고
    • Torch: A modular machine learning software library
    • IDIAP
    • Collobert R, Bengio S, Mariéthoz J: Torch: a modular machine learning software library. IDIAP; 2002.
    • (2002)
    • Collobert, R.1    Bengio, S.2    Mariéthoz, J.3
  • 39
    • 0002997383 scopus 로고
    • Stepwise discriminant analysis
    • Edited by: Enslein K, Ralston A and Wilf HS. New York, John Wiley & Sons
    • Jennrich RI: Stepwise discriminant analysis. Statistical Methods for Digital Computers Volume 3. Edited by: Enslein K, Ralston A and Wilf HS. New York, John Wiley & Sons; 1977:77-95.
    • (1977) Statistical Methods for Digital Computers Volume 3 , pp. 77-95
    • Jennrich, R.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.