메뉴 건너뛰기




Volumn 18, Issue 2, 2017, Pages 279-290

Recent advances in ChIP-seq analysis: From quality management to whole-genome annotation

Author keywords

Chromatin immunoprecipitation; Differential analysis; Experimental design; Large scale analysis; Quality management; Single cell analysis

Indexed keywords

CHROMATIN IMMUNOPRECIPITATION; EXPERIMENTAL DESIGN; GENOME; PROTEIN DNA BINDING; SINGLE CELL ANALYSIS; TOTAL QUALITY MANAGEMENT; VALIDITY; BINDING SITE; DNA SEQUENCE; HUMAN;

EID: 85018765775     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbw023     Document Type: Article
Times cited : (104)

References (134)
  • 1
    • 70349312354 scopus 로고    scopus 로고
    • ChIP-seq: Advantages and challenges of a maturing technology
    • Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Reu Genet 2009;10:669-80.
    • (2009) Nat Reu Genet , vol.10 , pp. 669-680
    • Park, P.J.1
  • 2
    • 70449711243 scopus 로고    scopus 로고
    • Computation for ChIP-seq and RNA-seq studies
    • Pepke S, Wold B, Mortazavi A. Computation for ChIP-seq and RNA-seq studies. Nat Methods 2009;6:S22-32.
    • (2009) Nat Methods , vol.6 , pp. S22-S32
    • Pepke, S.1    Wold, B.2    Mortazavi, A.3
  • 3
    • 84869502241 scopus 로고    scopus 로고
    • ChIP-seq and beyond: New and improved methodologies to detect and characterize protein-DNA interactions
    • Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Reu Genet 2012;13:840-52.
    • (2012) Nat Reu Genet , vol.13 , pp. 840-852
    • Furey, T.S.1
  • 4
    • 84866183822 scopus 로고    scopus 로고
    • HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle
    • Deardorff MA, Bando M, Nakato R, et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 2012;489:313-17.
    • (2012) Nature , vol.489 , pp. 313-317
    • Deardorff, M.A.1    Bando, M.2    Nakato, R.3
  • 5
    • 84865777825 scopus 로고    scopus 로고
    • Linking disease associations with regulatory information in the human genome
    • Schaub MA, Boyle AP, Kundaje A, et al. Linking disease associations with regulatory information in the human genome. Genome Res 2012;22:1748-59.
    • (2012) Genome Res , vol.22 , pp. 1748-1759
    • Schaub, M.A.1    Boyle, A.P.2    Kundaje, A.3
  • 6
    • 84901735084 scopus 로고    scopus 로고
    • A cohesin-independent role for NIPBL at promoters provides insights in CdLS
    • Zuin J, Franke V, van Ijcken WF, et al. A cohesin-independent role for NIPBL at promoters provides insights in CdLS. PLoS Genet 2014;10:e1004153
    • (2014) PLoS Genet , vol.10
    • Zuin, J.1    Franke, V.2    van Ijcken, W.F.3
  • 7
    • 84925840671 scopus 로고    scopus 로고
    • Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin
    • Izumi K, Nakato R, Zhang Z, et al. Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat Genet 2015;47:338-44.
    • (2015) Nat Genet , vol.47 , pp. 338-344
    • Izumi, K.1    Nakato, R.2    Zhang, Z.3
  • 8
    • 77957220857 scopus 로고    scopus 로고
    • Comparative epigenomic analysis of murine and human adipogenesis
    • Mikkelsen TS, Xu Z, Zhang X, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010;143:156-69.
    • (2010) Cell , vol.143 , pp. 156-169
    • Mikkelsen, T.S.1    Xu, Z.2    Zhang, X.3
  • 9
    • 79955583542 scopus 로고    scopus 로고
    • Mapping and analysis of chromatin state dynamics in nine human cell types
    • Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011;473:43-9.
    • (2011) Nature , vol.473 , pp. 43-49
    • Ernst, J.1    Kheradpour, P.2    Mikkelsen, T.S.3
  • 10
    • 84875606455 scopus 로고    scopus 로고
    • Chromosome engineering allows the efficient isolation of vertebrate neocentromeres
    • Shang WH, Hori T, Martins NM, et al. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Deu Cell 2013;24:635-48.
    • (2013) Deu Cell , vol.24 , pp. 635-648
    • Shang, W.H.1    Hori, T.2    Martins, N.M.3
  • 11
    • 84908335938 scopus 로고    scopus 로고
    • The chromosomal association of the smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement
    • Jeppsson K, Carlborg KK, Nakato R, et al. The chromosomal association of the smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet 2014;10:e1004680
    • (2014) PLoS Genet , vol.10
    • Jeppsson, K.1    Carlborg, K.K.2    Nakato, R.3
  • 12
    • 84940982012 scopus 로고    scopus 로고
    • Saturation analysis of ChIP-seq data for reproducible identification of binding peaks
    • Hansen P, Hecht J, Ibrahim DM, et al. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks. Genome Res 2015;25:1391-400.
    • (2015) Genome Res , vol.25 , pp. 1391-1400
    • Hansen, P.1    Hecht, J.2    Ibrahim, D.M.3
  • 13
    • 84937904648 scopus 로고    scopus 로고
    • Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation
    • Sutani T, Sakata T, Nakato R, et al. Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun 2015;6:7815
    • (2015) Nat Commun , vol.6 , pp. 7815
    • Sutani, T.1    Sakata, T.2    Nakato, R.3
  • 14
    • 79958117256 scopus 로고    scopus 로고
    • MEME-ChIP: Motif analysis of large DNA datasets
    • Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 2011;27:1696-7.
    • (2011) Bioinformatics , vol.27 , pp. 1696-1697
    • Machanick, P.1    Bailey, T.L.2
  • 16
    • 77952214662 scopus 로고    scopus 로고
    • GREAT improves functional interpretation of cis-regulatory regions
    • McLean CY, Bristor D, Hiller M, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010;28:495-501.
    • (2010) Nat Biotechnol , vol.28 , pp. 495-501
    • McLean, C.Y.1    Bristor, D.2    Hiller, M.3
  • 17
    • 84905583004 scopus 로고    scopus 로고
    • ChIP-Enrich: Gene set enrichment testing for ChIP-seq data
    • Welch RP, Lee C, Imbriano PM, et al. ChIP-Enrich: gene set enrichment testing for ChIP-seq data. Nucleic Acids Res 2014;42:e105
    • (2014) Nucleic Acids Res , vol.42
    • Welch, R.P.1    Lee, C.2    Imbriano, P.M.3
  • 18
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012;485:376-80.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1    Selvaraj, S.2    Yue, F.3
  • 19
    • 84862908850 scopus 로고    scopus 로고
    • Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
    • Li G, Ruan X, Auerbach RK, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012;148:84-98.
    • (2012) Cell , vol.148 , pp. 84-98
    • Li, G.1    Ruan, X.2    Auerbach, R.K.3
  • 20
    • 84927709359 scopus 로고    scopus 로고
    • Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers
    • Agirre X, Castellano G, Pascual M, et al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res 2015;25:478-87.
    • (2015) Genome Res , vol.25 , pp. 478-487
    • Agirre, X.1    Castellano, G.2    Pascual, M.3
  • 21
    • 84903771634 scopus 로고    scopus 로고
    • Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs
    • Alekseyenko AA, Gorchakov AA, Zee BM, et al. Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev 2014;28:1445-60.
    • (2014) Genes Dev , vol.28 , pp. 1445-1460
    • Alekseyenko, A.A.1    Gorchakov, A.A.2    Zee, B.M.3
  • 22
    • 79960401863 scopus 로고    scopus 로고
    • Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC)
    • Lin C, Garrett AS, De Kumar B, et al. Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes Deu 2011;25:1486-98.
    • (2011) Genes Deu , vol.25 , pp. 1486-1498
    • Lin, C.1    Garrett, A.S.2    De Kumar, B.3
  • 23
    • 78751659330 scopus 로고    scopus 로고
    • Nascent transcript sequencing visualizes transcription at nucleotide resolution
    • Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 2011;469:368-73.
    • (2011) Nature , vol.469 , pp. 368-373
    • Churchman, L.S.1    Weissman, J.S.2
  • 24
    • 84928386012 scopus 로고    scopus 로고
    • Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing
    • Nojima T, Gomes T, Grosso AR, et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 2015;161:526-40.
    • (2015) Cell , vol.161 , pp. 526-540
    • Nojima, T.1    Gomes, T.2    Grosso, A.R.3
  • 25
    • 84865739425 scopus 로고    scopus 로고
    • Architecture of the human regulatory network derived from ENCODE data
    • Gerstein MB, Kundaje A, Hariharan M, et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012;489:91-100.
    • (2012) Nature , vol.489 , pp. 91-100
    • Gerstein, M.B.1    Kundaje, A.2    Hariharan, M.3
  • 26
    • 84882738244 scopus 로고    scopus 로고
    • Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites
    • Yan J, Enge M, Whitington T, et al. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 2013;154:801-13.
    • (2013) Cell , vol.154 , pp. 801-813
    • Yan, J.1    Enge, M.2    Whitington, T.3
  • 27
    • 84944446432 scopus 로고    scopus 로고
    • Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape
    • Griffon A, Barbier Q, Dalino J, et al. Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape. Nucleic Acids Res 2015;43:e27
    • (2015) Nucleic Acids Res , vol.43
    • Griffon, A.1    Barbier, Q.2    Dalino, J.3
  • 28
    • 84875448918 scopus 로고    scopus 로고
    • Integrative annotation of chromatin elements from ENCODE data
    • Hoffman MM, Ernst J, Wilder SP, et al. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res 2013;41:827-41.
    • (2013) Nucleic Acids Res , vol.41 , pp. 827-841
    • Hoffman, M.M.1    Ernst, J.2    Wilder, S.P.3
  • 29
    • 84923362619 scopus 로고    scopus 로고
    • Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes
    • Kundaje A, Meuleman W, Ernst J, et al.; Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317-30.
    • (2015) Nature , vol.518 , pp. 317-330
    • Kundaje, A.1    Meuleman, W.2    Ernst, J.3
  • 30
    • 84865777819 scopus 로고    scopus 로고
    • ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia
    • Landt SG, Marinov GK, Kundaje A, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 2012;22:1813-31.
    • (2012) Genome Res , vol.22 , pp. 1813-1831
    • Landt, S.G.1    Marinov, G.K.2    Kundaje, A.3
  • 31
    • 84908207355 scopus 로고    scopus 로고
    • Identifying and mitigating bias in next-generation sequencing methods for chromatin biology
    • Meyer CA, Liu XS. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 2014;15:709-21.
    • (2014) Nat Rev Genet , vol.15 , pp. 709-721
    • Meyer, C.A.1    Liu, X.S.2
  • 32
    • 83255164884 scopus 로고    scopus 로고
    • Comprehensive genome-wide proteinDNA interactions detected at single-nucleotide resolution
    • Rhee HS, Pugh BF. Comprehensive genome-wide proteinDNA interactions detected at single-nucleotide resolution. Cell 2011;147:1408-19.
    • (2011) Cell , vol.147 , pp. 1408-1419
    • Rhee, H.S.1    Pugh, B.F.2
  • 33
    • 84926619310 scopus 로고    scopus 로고
    • ChIP-nexus enables improved detection of in vivo transcription factor binding footprints
    • He Q, Johnston J, Zeitlinger J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat Biotechnol 2015;33:395-401.
    • (2015) Nat Biotechnol , vol.33 , pp. 395-401
    • He, Q.1    Johnston, J.2    Zeitlinger, J.3
  • 34
    • 84870552401 scopus 로고    scopus 로고
    • Genome-wide mapping of nu-cleosome positioning and DNA methylation within individual DNA molecules
    • Kelly TK, Liu Y, Lay FD, et al. Genome-wide mapping of nu-cleosome positioning and DNA methylation within individual DNA molecules. Genome Res 2012;22:2497-506.
    • (2012) Genome Res , vol.22 , pp. 2497-2506
    • Kelly, T.K.1    Liu, Y.2    Lay, F.D.3
  • 35
    • 84888877924 scopus 로고    scopus 로고
    • Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
    • Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013;10:1213-18.
    • (2013) Nat Methods , vol.10 , pp. 1213-1218
    • Buenrostro, J.D.1    Giresi, P.G.2    Zaba, L.C.3
  • 36
    • 84891823877 scopus 로고    scopus 로고
    • The dynamics of genome replication using deep sequencing
    • Muller CA, Hawkins M, Retkute R, et al. The dynamics of genome replication using deep sequencing. Nucleic Acids Res 2014;42:e3
    • (2014) Nucleic Acids Res , vol.42
    • Muller, C.A.1    Hawkins, M.2    Retkute, R.3
  • 37
    • 84894613651 scopus 로고    scopus 로고
    • Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification
    • He HH, Meyer CA, Hu SS, et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat Methods 2014;11:73-8.
    • (2014) Nat Methods , vol.11 , pp. 73-78
    • He, H.H.1    Meyer, C.A.2    Hu, S.S.3
  • 38
    • 84861964081 scopus 로고    scopus 로고
    • Systematic evaluation of factors influencing ChIP-seq fidelity
    • Chen Y, Negre N, Li Q, et al. Systematic evaluation of factors influencing ChIP-seq fidelity. Nat Methods 2012;9:609-14.
    • (2012) Nat Methods , vol.9 , pp. 609-614
    • Chen, Y.1    Negre, N.2    Li, Q.3
  • 39
    • 53849146020 scopus 로고    scopus 로고
    • Model-based analysis of ChIP-Seq (MACS)
    • Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008;9:R137
    • (2008) Genome Biol , vol.9 , pp. R137
    • Zhang, Y.1    Liu, T.2    Meyer, C.A.3
  • 40
    • 57449100870 scopus 로고    scopus 로고
    • Design and analysis of ChIP-seq experiments for DNA-binding proteins
    • Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 2008;26:1351-9.
    • (2008) Nat Biotechnol , vol.26 , pp. 1351-1359
    • Kharchenko, P.V.1    Tolstorukov, M.Y.2    Park, P.J.3
  • 42
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10:R25.
    • (2009) Genome Biol , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3
  • 43
    • 67649884743 scopus 로고    scopus 로고
    • Fast and accurate short read alignment with Burrows-Wheeler transform
    • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-60.
    • (2009) Bioinformatics , vol.25 , pp. 1754-1760
    • Li, H.1    Durbin, R.2
  • 44
    • 80051489977 scopus 로고    scopus 로고
    • AlleleSeq: Analysis of al-lele-specific expression and binding in a network framework
    • Rozowsky J, Abyzov A, Wang J, et al. AlleleSeq: analysis of al-lele-specific expression and binding in a network framework. Mol Syst Biol 2011;7:522.
    • (2011) Mol Syst Biol , vol.7 , pp. 522
    • Rozowsky, J.1    Abyzov, A.2    Wang, J.3
  • 45
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57-74.
    • (2012) Nature , vol.489 , pp. 57-74
  • 46
    • 79960941563 scopus 로고    scopus 로고
    • Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data
    • Chung D, Kuan PF, Li B, et al. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data. PLoS Comput Biol 2011;7:e1002111
    • (2011) PLoS Comput Biol , vol.7
    • Chung, D.1    Kuan, P.F.2    Li, B.3
  • 47
    • 77953935308 scopus 로고    scopus 로고
    • Estimating enrichment of repetitive elements from high-throughput sequence data
    • Day DS, Luquette LJ, Park PJ, et al. Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol 2010;11:R69.
    • (2010) Genome Biol , vol.11 , pp. R69
    • Day, D.S.1    Luquette, L.J.2    Park, P.J.3
  • 48
    • 60149112271 scopus 로고    scopus 로고
    • PeakSeq enables systematic scoring ofChIP-seq experiments relative to controls
    • Rozowsky J, Euskirchen G, Auerbach RK, et al. PeakSeq enables systematic scoring ofChIP-seq experiments relative to controls. Nat Biotechnol 2009;27:66-75.
    • (2009) Nat Biotechnol , vol.27 , pp. 66-75
    • Rozowsky, J.1    Euskirchen, G.2    Auerbach, R.K.3
  • 49
    • 78651447845 scopus 로고    scopus 로고
    • The uniqueome: A mapp-ability resource for short-tag sequencing
    • Koehler R, Issac H, Cloonan N, et al. The uniqueome: a mapp-ability resource for short-tag sequencing. Bioinformatics 2011;27:272-4.
    • (2011) Bioinformatics , vol.27 , pp. 272-274
    • Koehler, R.1    Issac, H.2    Cloonan, N.3
  • 50
    • 84855989774 scopus 로고    scopus 로고
    • Fast computation and applications of genome mappability
    • Derrien T, Estelle J, Marco Sola S, et al. Fast computation and applications of genome mappability. PLoS One 2012;7:e30377.
    • (2012) PLoS One , vol.7
    • Derrien, T.1    Estelle, J.2    Marco Sola, S.3
  • 51
    • 84892728434 scopus 로고    scopus 로고
    • Sequencing depth and coverage: Key considerations in genomic analyses
    • Sims D, Sudbery I, Ilott NE, et al. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2014;15:121-32.
    • (2014) Nat Rev Genet , vol.15 , pp. 121-132
    • Sims, D.1    Sudbery, I.2    Ilott, N.E.3
  • 52
    • 77951836691 scopus 로고    scopus 로고
    • A CTCF-independent role for cohesin in tissue-specific transcription
    • Schmidt D, Schwalie PC, Ross-Innes CS, et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 2010;20:578-88.
    • (2010) Genome Res , vol.20 , pp. 578-588
    • Schmidt, D.1    Schwalie, P.C.2    Ross-Innes, C.S.3
  • 53
    • 84901303566 scopus 로고    scopus 로고
    • Impact of sequencing depth in ChIP-seq experiments
    • Jung YL, Luquette LJ, Ho JW, et al. Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Res 2014;42:e74.
    • (2014) Nucleic Acids Res , vol.42
    • Jung, Y.L.1    Luquette, L.J.2    Ho, J.W.3
  • 54
    • 84902077302 scopus 로고    scopus 로고
    • A statistical framework for power calculations in ChIP-seq experiments
    • Zuo C, Keles S. A statistical framework for power calculations in ChIP-seq experiments. Bioinformatics 2014;30:753-60.
    • (2014) Bioinformatics , vol.30 , pp. 753-760
    • Zuo, C.1    Keles, S.2
  • 55
    • 84875700725 scopus 로고    scopus 로고
    • Predicting the molecular complexity of sequencing libraries
    • Daley T, Smith AD. Predicting the molecular complexity of sequencing libraries. Nat Methods 2013;10:325-7.
    • (2013) Nat Methods , vol.10 , pp. 325-327
    • Daley, T.1    Smith, A.D.2
  • 56
    • 84894573097 scopus 로고    scopus 로고
    • Large-scale quality analysis of published ChIP-seq data
    • Marinov GK, Kundaje A, Park PJ, et al. Large-scale quality analysis of published ChIP-seq data. G3 (Bethesda) 2014;4:209-23.
    • (2014) G3 (Bethesda) , vol.4 , pp. 209-223
    • Marinov, G.K.1    Kundaje, A.2    Park, P.J.3
  • 57
    • 77952148742 scopus 로고    scopus 로고
    • Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs
    • Guttman M, Garber M, Levin JZ, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 2010;28:503-10.
    • (2010) Nat Biotechnol , vol.28 , pp. 503-510
    • Guttman, M.1    Garber, M.2    Levin, J.Z.3
  • 58
    • 84879412369 scopus 로고    scopus 로고
    • DROMPA: Easy-to-handle peak calling and visualization software for the computational analysis and validation of ChIP-seq data
    • Nakato R, Itoh T, Shirahige K. DROMPA: easy-to-handle peak calling and visualization software for the computational analysis and validation of ChIP-seq data. Genes Cells 2013;18:589-601.
    • (2013) Genes Cells , vol.18 , pp. 589-601
    • Nakato, R.1    Itoh, T.2    Shirahige, K.3
  • 60
    • 84917678178 scopus 로고    scopus 로고
    • A comparison of control samples for ChIP-seq of histone modifications
    • Flensburg C, Kinkel SA, Keniry A, et al. A comparison of control samples for ChIP-seq of histone modifications. Front Genet 2014;5:329.
    • (2014) Front Genet , vol.5 , pp. 329
    • Flensburg, C.1    Kinkel, S.A.2    Keniry, A.3
  • 61
    • 67650711619 scopus 로고    scopus 로고
    • A clustering approach for identification of enriched domains from histone modification ChIP-Seq data
    • Zang C, Schones DE, Zeng C, et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 2009;25:1952-8.
    • (2009) Bioinformatics , vol.25 , pp. 1952-1958
    • Zang, C.1    Schones, D.E.2    Zeng, C.3
  • 62
    • 77952857912 scopus 로고    scopus 로고
    • A signal-noise model for significance analysis of ChIP-seq with negative control
    • Xu H, Handoko L, Wei X, et al. A signal-noise model for significance analysis of ChIP-seq with negative control. Bioinformatics 2010;26:1199-204.
    • (2010) Bioinformatics , vol.26 , pp. 1199-1204
    • Xu, H.1    Handoko, L.2    Wei, X.3
  • 63
    • 55749094855 scopus 로고    scopus 로고
    • An integrated software system for analyzing ChIP-chip and ChIP-seq data
    • Ji H, Jiang H, Ma W, et al. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 2008;26:1293-300.
    • (2008) Nat Biotechnol , vol.26 , pp. 1293-1300
    • Ji, H.1    Jiang, H.2    Ma, W.3
  • 64
    • 70449434105 scopus 로고    scopus 로고
    • BayesPeak: Bayesian analysis ofChIP-seq data
    • Spyrou C, Stark R, Lynch AG, et al. BayesPeak: Bayesian analysis ofChIP-seq data. BMC Bioinformatics 2009;10:299.
    • (2009) BMC Bioinformatics , vol.10 , pp. 299
    • Spyrou, C.1    Stark, R.2    Lynch, A.G.3
  • 65
    • 80054712249 scopus 로고    scopus 로고
    • A statistical framework for the analysis of ChIP-Seq data
    • Kuan PF, Chung DJ, Pan GJ, et al. A statistical framework for the analysis of ChIP-Seq data. J Am Stat Assoc 2011;106:891-903.
    • (2011) J Am Stat Assoc , vol.106 , pp. 891-903
    • Kuan, P.F.1    Chung, D.J.2    Pan, G.J.3
  • 66
    • 79960614727 scopus 로고    scopus 로고
    • ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions
    • Rashid NU, Giresi PG, Ibrahim JG, et al. ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions. Genome Biol 2011;12:R67.
    • (2011) Genome Biol , vol.12 , pp. R67
    • Rashid, N.U.1    Giresi, P.G.2    Ibrahim, J.G.3
  • 67
    • 79951753003 scopus 로고    scopus 로고
    • Discovering homotypic binding events at high spatial resolution
    • Guo Y, Papachristoudis G, Altshuler RC, et al. Discovering homotypic binding events at high spatial resolution. Bioinformatics 2010;26:3028-34.
    • (2010) Bioinformatics , vol.26 , pp. 3028-3034
    • Guo, Y.1    Papachristoudis, G.2    Altshuler, R.C.3
  • 68
    • 79952602025 scopus 로고    scopus 로고
    • PICS: Probabilistic inference for ChIP-seq
    • Zhang X, Robertson G, Krzywinski M, et al. PICS: probabilistic inference for ChIP-seq. Biometrics 2011;67:151-63.
    • (2011) Biometrics , vol.67 , pp. 151-163
    • Zhang, X.1    Robertson, G.2    Krzywinski, M.3
  • 69
    • 52649132425 scopus 로고    scopus 로고
    • Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data
    • Jothi R, Cuddapah S, Barski A, et al. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 2008;36:5221-31.
    • (2008) Nucleic Acids Res , vol.36 , pp. 5221-5231
    • Jothi, R.1    Cuddapah, S.2    Barski, A.3
  • 70
    • 84886038381 scopus 로고    scopus 로고
    • Identification of transcription factor binding sites from ChIP-seq data at high resolution
    • Bardet AF, Steinmann J, Bafna S, et al. Identification of transcription factor binding sites from ChIP-seq data at high resolution. Bioinformatics 2013;29:2705-13.
    • (2013) Bioinformatics , vol.29 , pp. 2705-2713
    • Bardet, A.F.1    Steinmann, J.2    Bafna, S.3
  • 71
    • 84907502335 scopus 로고    scopus 로고
    • PePr: A peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data
    • Zhang Y, Lin YH, Johnson TD, et al. PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data. Bioinformatics 2014;30:2568-75.
    • (2014) Bioinformatics , vol.30 , pp. 2568-2575
    • Zhang, Y.1    Lin, Y.H.2    Johnson, T.D.3
  • 72
    • 84922390212 scopus 로고    scopus 로고
    • JAMM: A peak finder for joint analysis of NGS replicates
    • Ibrahim MM, Lacadie SA, Ohler U. JAMM: a peak finder for joint analysis of NGS replicates. Bioinformatics 2015;31:48-55.
    • (2015) Bioinformatics , vol.31 , pp. 48-55
    • Ibrahim, M.M.1    Lacadie, S.A.2    Ohler, U.3
  • 73
    • 84874308615 scopus 로고    scopus 로고
    • BroadPeak: A novel algorithm for identifying broad peaks in diffuse ChIP-seq datasets
    • Wang J, Lunyak VV, Jordan IK. BroadPeak: a novel algorithm for identifying broad peaks in diffuse ChIP-seq datasets. Bioinformatics 2013;29:492-3.
    • (2013) Bioinformatics , vol.29 , pp. 492-493
    • Wang, J.1    Lunyak, V.V.2    Jordan, I.K.3
  • 74
    • 84964696220 scopus 로고    scopus 로고
    • MUSIC: Identification of enriched regions in ChIP-Seq experiments using a mapp-ability-corrected multiscale signal processing framework
    • Harmanci A, Rozowsky J, Gerstein M. MUSIC: identification of enriched regions in ChIP-Seq experiments using a mapp-ability-corrected multiscale signal processing framework. Genome Biol 2014;15:474.
    • (2014) Genome Biol , vol.15 , pp. 474
    • Harmanci, A.1    Rozowsky, J.2    Gerstein, M.3
  • 75
    • 84864587283 scopus 로고    scopus 로고
    • Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data
    • Xing H, Mo Y, Liao W, et al. Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data. PLoS Comput Biol 2012;8:e1002613.
    • (2012) PLoS Comput Biol , vol.8
    • Xing, H.1    Mo, Y.2    Liao, W.3
  • 76
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 77
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA sequencing data using observation weights
    • Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res 2014;42:e91.
    • (2014) Nucleic Acids Res , vol.42
    • Zhou, X.1    Lindsay, H.2    Robinson, M.D.3
  • 78
    • 77951920690 scopus 로고    scopus 로고
    • c-Myc regulates transcriptional pause release
    • Rahl PB, Lin CY, Seila AC, et al. c-Myc regulates transcriptional pause release. Cell 2010;141:432-45.
    • (2010) Cell , vol.141 , pp. 432-445
    • Rahl, P.B.1    Lin, C.Y.2    Seila, A.C.3
  • 79
    • 84887478181 scopus 로고    scopus 로고
    • Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins
    • Teytelman L, Thurtle DM, Rine J, et al. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci USA 2013;110:18602-7.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 18602-18607
    • Teytelman, L.1    Thurtle, D.M.2    Rine, J.3
  • 80
    • 84875805105 scopus 로고    scopus 로고
    • Eukaryotic replisome components cooperate to process histones during chromosome replication
    • Foltman M, Evrin C, De Piccoli G, et al. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 2013;3:892-904.
    • (2013) Cell Rep , vol.3 , pp. 892-904
    • Foltman, M.1    Evrin, C.2    De Piccoli, G.3
  • 81
    • 84938554960 scopus 로고    scopus 로고
    • Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation
    • Kubota T, Katou Y, Nakato R, et al. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Cell Rep 2015;12:774-87.
    • (2015) Cell Rep , vol.12 , pp. 774-787
    • Kubota, T.1    Katou, Y.2    Nakato, R.3
  • 82
    • 74549114755 scopus 로고    scopus 로고
    • A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments
    • Laajala TD, Raghav S, Tuomela S, et al. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics 2009;10:618.
    • (2009) BMC Genomics , vol.10 , pp. 618
    • Laajala, T.D.1    Raghav, S.2    Tuomela, S.3
  • 83
    • 80053599512 scopus 로고    scopus 로고
    • Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data
    • Malone BM, Tan F, Bridges SM, et al. Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data. PLoS One 2011;6:e25260.
    • (2011) PLoS One , vol.6
    • Malone, B.M.1    Tan, F.2    Bridges, S.M.3
  • 84
    • 77955368935 scopus 로고    scopus 로고
    • Evaluation of algorithm performance in ChIP-seq peak detection
    • Wilbanks EG, Facciotti MT. Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One 2010;5:e11471.
    • (2010) PLoS One , vol.5
    • Wilbanks, E.G.1    Facciotti, M.T.2
  • 85
    • 79952334870 scopus 로고    scopus 로고
    • A manually curated ChIP-seq benchmark demonstrates room for improvement in current peak-finder programs
    • Rye MB, Saetrom P, Drablos F. A manually curated ChIP-seq benchmark demonstrates room for improvement in current peak-finder programs. Nucleic Acids Res 2011;39:e25.
    • (2011) Nucleic Acids Res , vol.39
    • Rye, M.B.1    Saetrom, P.2    Drablos, F.3
  • 86
    • 84868325694 scopus 로고    scopus 로고
    • Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules
    • Faure AJ, Schmidt D, Watt S, et al. Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res 2012;22:2163-75.
    • (2012) Genome Res , vol.22 , pp. 2163-2175
    • Faure, A.J.1    Schmidt, D.2    Watt, S.3
  • 87
    • 84861133568 scopus 로고    scopus 로고
    • A computational pipeline for comparative ChIP-seq analyses
    • Bardet AF, He Q, Zeitlinger J, et al. A computational pipeline for comparative ChIP-seq analyses. Nat Protoc 2012;7:45-61.
    • (2012) Nat Protoc , vol.7 , pp. 45-61
    • Bardet, A.F.1    He, Q.2    Zeitlinger, J.3
  • 88
    • 79955564639 scopus 로고    scopus 로고
    • Measuring reproducibility of high-throughput experiments
    • Li Q, Brown JB, Huang H, et al. Measuring reproducibility of high-throughput experiments. Ann Appl Stat 2011;5:1752-79.
    • (2011) Ann Appl Stat , vol.5 , pp. 1752-1779
    • Li, Q.1    Brown, J.B.2    Huang, H.3
  • 89
    • 84980329742 scopus 로고    scopus 로고
    • Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments
    • Jain D, Baldi S, Zabel A, et al. Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments. Nucleic Acids Res 2015;43:6959-68.
    • (2015) Nucleic Acids Res , vol.43 , pp. 6959-6968
    • Jain, D.1    Baldi, S.2    Zabel, A.3
  • 90
    • 84864956117 scopus 로고    scopus 로고
    • Normalization, bias correction, and peak calling for ChIP-seq
    • Diaz A, Park K, Lim DA, et al. Normalization, bias correction, and peak calling for ChIP-seq. Stat Appl Genet Mol Biol 2012;11:article 9.
    • (2012) Stat Appl Genet Mol Biol , vol.11
    • Diaz, A.1    Park, K.2    Lim, D.A.3
  • 91
    • 69849103628 scopus 로고    scopus 로고
    • Comparative study on ChIP-seq data: Normalization and binding pattern characterization
    • Taslim C, Wu J, Yan P, et al. Comparative study on ChIP-seq data: normalization and binding pattern characterization. Bioinformatics 2009;25:2334-40.
    • (2009) Bioinformatics , vol.25 , pp. 2334-2340
    • Taslim, C.1    Wu, J.2    Yan, P.3
  • 92
    • 84871798675 scopus 로고    scopus 로고
    • A co-localization model of paired ChIP-seq data using a large ENCODE data set enables comparison of multiple samples
    • Maehara K, Odawara J, Harada A, et al. A co-localization model of paired ChIP-seq data using a large ENCODE data set enables comparison of multiple samples. Nucleic Acids Res 2013;41:54-62.
    • (2013) Nucleic Acids Res , vol.41 , pp. 54-62
    • Maehara, K.1    Odawara, J.2    Harada, A.3
  • 93
    • 84862799740 scopus 로고    scopus 로고
    • MAnorm: A robust model for quantitative comparison of ChIP-Seq data sets
    • Shao Z, Zhang Y, Yuan GC, et al. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol 2012;13:R16.
    • (2012) Genome Biol , vol.13 , pp. R16
    • Shao, Z.1    Zhang, Y.2    Yuan, G.C.3
  • 94
    • 84931078005 scopus 로고    scopus 로고
    • A novel statistical method for quantitative comparison of multiple ChIP-seq datasets
    • Chen L, Wang C, Qin ZS, et al. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets. Bioinformatics 2015;31:1889-96.
    • (2015) Bioinformatics , vol.31 , pp. 1889-1896
    • Chen, L.1    Wang, C.2    Qin, Z.S.3
  • 95
    • 84904252718 scopus 로고    scopus 로고
    • Quantifying ChIP-seq data: A spiking method providing an internal reference for sample-to-sample normalization
    • Bonhoure N, Bounova G, Bernasconi D, et al. Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 2014;24:1157-68.
    • (2014) Genome Res , vol.24 , pp. 1157-1168
    • Bonhoure, N.1    Bounova, G.2    Bernasconi, D.3
  • 96
    • 84919716184 scopus 로고    scopus 로고
    • Quantitative ChIP-Seq normalization reveals global modulation of the epigenome
    • Orlando DA, Chen MW, Brown VE, et al. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep 2014;9:1163-70.
    • (2014) Cell Rep , vol.9 , pp. 1163-1170
    • Orlando, D.A.1    Chen, M.W.2    Brown, V.E.3
  • 97
    • 84938740703 scopus 로고    scopus 로고
    • Calibrating ChIP-Seq with nucleosomal internal standards to measure histone modification density genome wide
    • Grzybowski AT, Chen Z, Ruthenburg AJ. Calibrating ChIP-Seq with nucleosomal internal standards to measure histone modification density genome wide. Mol Cell 2015;58:886-99.
    • (2015) Mol Cell , vol.58 , pp. 886-899
    • Grzybowski, A.T.1    Chen, Z.2    Ruthenburg, A.J.3
  • 98
    • 84893931097 scopus 로고    scopus 로고
    • Nucleosome loss leads to global transcriptional up-regulation and genomic instability duringyeast aging
    • Hu Z, Chen K, Xia Z, et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability duringyeast aging. Genes Deu 2014;28:396-408.
    • (2014) Genes Deu , vol.28 , pp. 396-408
    • Hu, Z.1    Chen, K.2    Xia, Z.3
  • 99
    • 84950298816 scopus 로고    scopus 로고
    • Biological chromodynamics: A general method for measuring protein occupancy across the genome by calibrating ChIP-seq
    • Hu B, Petela N, Kurze A, et al. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucleic Acids Res 2015;43:e132.
    • (2015) Nucleic Acids Res , vol.43
    • Hu, B.1    Petela, N.2    Kurze, A.3
  • 100
    • 84911494217 scopus 로고    scopus 로고
    • Principles of regulatory information conservation between mouse and human
    • Cheng Y, Ma Z, Kim BH, et al. Principles of regulatory information conservation between mouse and human. Nature 2014;515:371-5.
    • (2014) Nature , vol.515 , pp. 371-375
    • Cheng, Y.1    Ma, Z.2    Kim, B.H.3
  • 101
    • 84907263788 scopus 로고    scopus 로고
    • Comparative analysis of regulatory information and circuits across distant species
    • Boyle AP, Araya CL, Brdlik C, et al. Comparative analysis of regulatory information and circuits across distant species. Nature 2014;512:453-6.
    • (2014) Nature , vol.512 , pp. 453-456
    • Boyle, A.P.1    Araya, C.L.2    Brdlik, C.3
  • 102
    • 84911462077 scopus 로고    scopus 로고
    • A comparative encyclopedia of DNA elements in the mouse genome
    • Yue F, Cheng Y, Breschi A, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2014;515:355-64.
    • (2014) Nature , vol.515 , pp. 355-364
    • Yue, F.1    Cheng, Y.2    Breschi, A.3
  • 103
    • 84857707318 scopus 로고    scopus 로고
    • ChromHMM: Automating chromatin-state discovery and characterization
    • Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 2012;9:215-16.
    • (2012) Nat Methods , vol.9 , pp. 215-216
    • Ernst, J.1    Kellis, M.2
  • 104
    • 84862785201 scopus 로고    scopus 로고
    • Unsupervised pattern discovery in human chromatin structure through genomic segmentation
    • Hoffman MM, Buske OJ, Wang J, et al. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods 2012;9:473-6.
    • (2012) Nat Methods , vol.9 , pp. 473-476
    • Hoffman, M.M.1    Buske, O.J.2    Wang, J.3
  • 105
    • 84868328797 scopus 로고    scopus 로고
    • Spark: A navigational paradigm for genomic data exploration
    • Nielsen CB, Younesy H, O'Geen H, et al. Spark: a navigational paradigm for genomic data exploration. Genome Res 2012;22:2262-9.
    • (2012) Genome Res , vol.22 , pp. 2262-2269
    • Nielsen, C.B.1    Younesy, H.2    O'Geen, H.3
  • 106
    • 84876128377 scopus 로고    scopus 로고
    • Discovering and mapping chromatin states using a tree hidden Markov model
    • Biesinger J, Wang Y, Xie X. Discovering and mapping chromatin states using a tree hidden Markov model. BMC Bioinformatics 2013;14(Suppl 5):S4.
    • (2013) BMC Bioinformatics , vol.14 , pp. S4
    • Biesinger, J.1    Wang, Y.2    Xie, X.3
  • 107
    • 84939162929 scopus 로고    scopus 로고
    • Spectacle: Fast chromatin state annotation using spectral learning
    • Song J, Chen KC. Spectacle: fast chromatin state annotation using spectral learning. Genome Biol 2015;16:33
    • (2015) Genome Biol , vol.16 , pp. 33
    • Song, J.1    Chen, K.C.2
  • 108
    • 84937776714 scopus 로고    scopus 로고
    • Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome
    • Mammana A, Chung HR. Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome. Genome Biol 2015;16:151.
    • (2015) Genome Biol , vol.16 , pp. 151
    • Mammana, A.1    Chung, H.R.2
  • 109
    • 84939507046 scopus 로고    scopus 로고
    • Systematic chromatin state comparison of epigenomes associated with diverse properties including sex and tissue type
    • Yen A, Kellis M. Systematic chromatin state comparison of epigenomes associated with diverse properties including sex and tissue type. Nat Commun 2015;6:7973.
    • (2015) Nat Commun , vol.6 , pp. 7973
    • Yen, A.1    Kellis, M.2
  • 110
    • 84926632357 scopus 로고    scopus 로고
    • Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues
    • Ernst J, Kellis M. Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues. Nat Biotechnol 2015;33:364-76.
    • (2015) Nat Biotechnol , vol.33 , pp. 364-376
    • Ernst, J.1    Kellis, M.2
  • 111
    • 84936791924 scopus 로고    scopus 로고
    • hiHMM: Bayesian non-parametric joint inference of chromatin state maps
    • Sohn KA, Ho JW, Djordjevic D, et al. hiHMM: Bayesian non-parametric joint inference of chromatin state maps. Bioinformatics 2015;31:2066-74.
    • (2015) Bioinformatics , vol.31 , pp. 2066-2074
    • Sohn, K.A.1    Ho, J.W.2    Djordjevic, D.3
  • 112
    • 84879357102 scopus 로고    scopus 로고
    • jMOSAiCS: Joint analysis of multiple ChIP-seq datasets
    • Zeng X, Sanalkumar R, Bresnick EH, et al. jMOSAiCS: joint analysis of multiple ChIP-seq datasets. Genome Biol 2013;14:R38.
    • (2013) Genome Biol , vol.14 , pp. R38
    • Zeng, X.1    Sanalkumar, R.2    Bresnick, E.H.3
  • 113
    • 84896790041 scopus 로고    scopus 로고
    • Joint modeling of ChIP-seq data via a Markov random field model
    • Bao Y, Vinciotti V, Wit E, et al. Joint modeling of ChIP-seq data via a Markov random field model. Biostatistics 2014;15:296-310.
    • (2014) Biostatistics , vol.15 , pp. 296-310
    • Bao, Y.1    Vinciotti, V.2    Wit, E.3
  • 114
    • 84897436870 scopus 로고    scopus 로고
    • An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding
    • Mahony S, Edwards MD, Mazzoni EO, et al. An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding. PLoS Comput Biol 2014;10:e1003501.
    • (2014) PLoS Comput Biol , vol.10
    • Mahony, S.1    Edwards, M.D.2    Mazzoni, E.O.3
  • 115
    • 84922385856 scopus 로고    scopus 로고
    • SignalSpider: Probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles
    • Wong KC, Li Y, Peng CB, et al. SignalSpider: probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles. Bioinformatics 2015;31:17-24.
    • (2015) Bioinformatics , vol.31 , pp. 17-24
    • Wong, K.C.1    Li, Y.2    Peng, C.B.3
  • 116
    • 84927698129 scopus 로고    scopus 로고
    • Epigenetics reloaded: The single-cell revolution
    • Bheda P, Schneider R. Epigenetics reloaded: the single-cell revolution. Trends Cell Biol 2014;24:712-23.
    • (2014) Trends Cell Biol , vol.24 , pp. 712-723
    • Bheda, P.1    Schneider, R.2
  • 117
    • 84947617259 scopus 로고    scopus 로고
    • Single-cell epigenomics: Techniques and emerging applications
    • Schwartzman O, Tanay A. Single-cell epigenomics: techniques and emerging applications. Nat Rev Genet 2015;16:716-26.
    • (2015) Nat Rev Genet , vol.16 , pp. 716-726
    • Schwartzman, O.1    Tanay, A.2
  • 118
    • 84946545109 scopus 로고    scopus 로고
    • Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state
    • Rotem A, Ram O, Shoresh N, et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 2015;33:1165-72.
    • (2015) Nat Biotechnol , vol.33 , pp. 1165-1172
    • Rotem, A.1    Ram, O.2    Shoresh, N.3
  • 119
    • 84877057770 scopus 로고    scopus 로고
    • Single-cell analysis and sorting using droplet-based microfluidics
    • Mazutis L, Gilbert J, Ung WL, et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 2013;8:870-91.
    • (2013) Nat Protoc , vol.8 , pp. 870-891
    • Mazutis, L.1    Gilbert, J.2    Ung, W.L.3
  • 120
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161:1187-201.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3
  • 121
    • 84930685084 scopus 로고    scopus 로고
    • High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq using drop-based micro-fluidics
    • Rotem A, Ram O, Shoresh N, et al. High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq using drop-based micro-fluidics. PLoS One 2015;10:e0116328.
    • (2015) PLoS One , vol.10
    • Rotem, A.1    Ram, O.2    Shoresh, N.3
  • 122
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015;161:1202-14.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3
  • 123
    • 80053388216 scopus 로고    scopus 로고
    • Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq
    • Adli M, Bernstein BE. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc 2011;6:1656-68.
    • (2011) Nat Protoc , vol.6 , pp. 1656-1668
    • Adli, M.1    Bernstein, B.E.2
  • 124
    • 79959838441 scopus 로고    scopus 로고
    • Single-tube linear DNA amplification (LinDA) for robust ChIP-seq
    • Shankaranarayanan P, Mendoza-Parra MA, Walia M, et al. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat Methods 2011;8:565-7.
    • (2011) Nat Methods , vol.8 , pp. 565-567
    • Shankaranarayanan, P.1    Mendoza-Parra, M.A.2    Walia, M.3
  • 125
    • 84907419194 scopus 로고    scopus 로고
    • Immunogenetics. Chromatin state dynamics during blood formation
    • Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, et al. Immunogenetics. Chromatin state dynamics during blood formation. Science 2014;345:943-9.
    • (2014) Science , vol.345 , pp. 943-949
    • Lara-Astiaso, D.1    Weiner, A.2    Lorenzo-Vivas, E.3
  • 126
    • 84927759197 scopus 로고    scopus 로고
    • Assaying the epigenome in limited numbers of cells
    • Greenleaf WJ. Assaying the epigenome in limited numbers of cells. Methods 2015;72:51-6.
    • (2015) Methods , vol.72 , pp. 51-56
    • Greenleaf, W.J.1
  • 127
    • 84959147998 scopus 로고    scopus 로고
    • ChIPmentation: Fast, robust, low-input ChIP-seq for histones and transcription factors
    • Schmidl C, Rendeiro AF, Sheffield NC, et al. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat Methods 2015;12:963-5.
    • (2015) Nat Methods , vol.12 , pp. 963-965
    • Schmidl, C.1    Rendeiro, A.F.2    Sheffield, N.C.3
  • 128
    • 84926681140 scopus 로고    scopus 로고
    • Epigenomic annotation of genetic variants using the Roadmap Epigenome Browser
    • Zhou X, Li D, Zhang B, et al. Epigenomic annotation of genetic variants using the Roadmap Epigenome Browser. Nat Biotechnol 2015;33:345-6.
    • (2015) Nat Biotechnol , vol.33 , pp. 345-346
    • Zhou, X.1    Li, D.2    Zhang, B.3
  • 129
    • 84924039302 scopus 로고    scopus 로고
    • A method for calculating probabilities of fitness consequences for point mutations across the human genome
    • Gulko B, Hubisz MJ, Gronau I, et al. A method for calculating probabilities of fitness consequences for point mutations across the human genome. Nat Genet 2015;47:276-83.
    • (2015) Nat Genet , vol.47 , pp. 276-283
    • Gulko, B.1    Hubisz, M.J.2    Gronau, I.3
  • 130
    • 84947613905 scopus 로고    scopus 로고
    • Human genotype-phenotype databases: Aims, challenges and opportunities
    • Brookes AJ, Robinson PN. Human genotype-phenotype databases: aims, challenges and opportunities. Nat Rev Genet 2015;16:702-15.
    • (2015) Nat Rev Genet , vol.16 , pp. 702-715
    • Brookes, A.J.1    Robinson, P.N.2
  • 132
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014;32:347-55.
    • (2014) Nat Biotechnol , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 133
    • 84955652467 scopus 로고    scopus 로고
    • De novo ChIP-seq analysis
    • He X, Cicek AE, Wang Y, et al. De novo ChIP-seq analysis. Genome Biol 2015;16:205.
    • (2015) Genome Biol , vol.16 , pp. 205
    • He, X.1    Cicek, A.E.2    Wang, Y.3
  • 134
    • 84940645811 scopus 로고    scopus 로고
    • The theory and practice of genome sequence assembly
    • Simpson JT, Pop M. The theory and practice of genome sequence assembly. Annu Rev Genomics Hum Genet 2015;16:153-72.
    • (2015) Annu Rev Genomics Hum Genet , vol.16 , pp. 153-172
    • Simpson, J.T.1    Pop, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.