-
1
-
-
84857097177
-
RNA-guided genetic silencing systems in bacteria and archaea
-
Wiedenheft B., et al. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482:331-338.
-
(2012)
Nature
, vol.482
, pp. 331-338
-
-
Wiedenheft, B.1
-
2
-
-
84870180587
-
The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity
-
Westra E.R., et al. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 2012, 46:311-339.
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 311-339
-
-
Westra, E.R.1
-
3
-
-
84878936806
-
CRISPR-mediated adaptive immune systems in bacteria and archaea
-
Sorek R., et al. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 2013, 82:237-266.
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 237-266
-
-
Sorek, R.1
-
4
-
-
84879584456
-
CRISPR interference: a structural perspective
-
Reeks J., et al. CRISPR interference: a structural perspective. Biochem. J. 2013, 453:155-166.
-
(2013)
Biochem. J.
, vol.453
, pp. 155-166
-
-
Reeks, J.1
-
5
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR-Cas systems
-
van der Oost J., et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 2014, 12:479-492.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 479-492
-
-
van der Oost, J.1
-
6
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315:1709-1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
-
7
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau J.E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468:67-71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
-
8
-
-
84903471734
-
Adapting to new threats: the generation of memory by CRISPR-Cas immune systems
-
Heler R., et al. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol. Microbiol. 2014, 93:1-9.
-
(2014)
Mol. Microbiol.
, vol.93
, pp. 1-9
-
-
Heler, R.1
-
9
-
-
34248374277
-
A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
Makarova K.S., et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 2006, 1:7.
-
(2006)
Biol. Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
-
10
-
-
35748974534
-
Evolutionary conservation of sequence and secondary structures in CRISPR repeats
-
Kunin V., et al. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 2007, 8:R61.
-
(2007)
Genome Biol.
, vol.8
, pp. R61
-
-
Kunin, V.1
-
11
-
-
34250662138
-
The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats
-
Grissa I., et al. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007, 8:172.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 172
-
-
Grissa, I.1
-
12
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns S.J.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321:960-964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
-
13
-
-
58049191229
-
Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
-
Carte J., et al. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 2008, 22:3489-3496.
-
(2008)
Genes Dev.
, vol.22
, pp. 3489-3496
-
-
Carte, J.1
-
14
-
-
77956498326
-
Sequence- and structure-specific RNA processing by a CRISPR endonuclease
-
Haurwitz R.E., et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 2010, 329:1355-1358.
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
-
15
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471:602-607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
16
-
-
79958825675
-
An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3
-
Sashital D.G., et al. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Mol. Biol. 2011, 18:680-687.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 680-687
-
-
Sashital, D.G.1
-
17
-
-
79958848350
-
Recognition and maturation of effector RNAs in a CRISPR interference pathway
-
Gesner E.M., et al. Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat. Struct. Mol. Biol. 2011, 18:688-692.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 688-692
-
-
Gesner, E.M.1
-
18
-
-
79958754524
-
Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE)
-
Lintner N.G., et al. Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J. Biol. Chem. 2011, 286:1-14.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 1-14
-
-
Lintner, N.G.1
-
19
-
-
79955574254
-
Structural basis for CRISPR RNA-guided DNA recognition by Cascade
-
Jore M.M., et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 2011, 18:529-536.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 529-536
-
-
Jore, M.M.1
-
20
-
-
84855475577
-
Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site
-
Hatoum-Aslan A., et al. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:21218-21222.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 21218-21222
-
-
Hatoum-Aslan, A.1
-
21
-
-
84868111481
-
Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis
-
Richter H., et al. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res. 2012, 40:9887-9896.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 9887-9896
-
-
Richter, H.1
-
22
-
-
84865704094
-
Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system
-
Nam K.H., et al. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 2012, 20:1574-1584.
-
(2012)
Structure
, vol.20
, pp. 1574-1584
-
-
Nam, K.H.1
-
23
-
-
57049149666
-
Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus
-
Hale C., et al. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 2008, 14:2572-2579.
-
(2008)
RNA
, vol.14
, pp. 2572-2579
-
-
Hale, C.1
-
24
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini L.A., Sontheimer E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322:1843-1845.
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
25
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
26
-
-
84899105533
-
CRISPR-Cas systems: beyond adaptive immunity
-
Westra E.R., et al. CRISPR-Cas systems: beyond adaptive immunity. Nat. Rev. Microbiol. 2014, 12:317-326.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 317-326
-
-
Westra, E.R.1
-
27
-
-
79956157571
-
Evolution and classification of the CRISPR-Cas systems
-
Makarova K.S., et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9:467-477.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 467-477
-
-
Makarova, K.S.1
-
28
-
-
33744503676
-
Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain
-
Ebihara A., et al. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci. 2006, 15:1494-1499.
-
(2006)
Protein Sci.
, vol.15
, pp. 1494-1499
-
-
Ebihara, A.1
-
29
-
-
84858659496
-
Mechanism of substrate selection by a highly specific CRISPR endoribonuclease
-
Sternberg S.H., et al. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA 2012, 18:661-672.
-
(2012)
RNA
, vol.18
, pp. 661-672
-
-
Sternberg, S.H.1
-
30
-
-
84893230222
-
Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases
-
Niewoehner O., et al. Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Res. 2014, 42:1341-1353.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 1341-1353
-
-
Niewoehner, O.1
-
31
-
-
79551694059
-
Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage
-
Wang R., et al. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 2011, 19:257-264.
-
(2011)
Structure
, vol.19
, pp. 257-264
-
-
Wang, R.1
-
32
-
-
84874930818
-
Recognition and cleavage of a nonstructured CRISPR RNA by its processing endoribonuclease Cas6
-
Shao Y., Li H. Recognition and cleavage of a nonstructured CRISPR RNA by its processing endoribonuclease Cas6. Structure 2013, 21:385-393.
-
(2013)
Structure
, vol.21
, pp. 385-393
-
-
Shao, Y.1
Li, H.2
-
33
-
-
79960029056
-
RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
-
Wiedenheft B., et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10092-10097.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10092-10097
-
-
Wiedenheft, B.1
-
34
-
-
84896773662
-
A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii
-
Brendel J., et al. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii. J. Biol. Chem. 2014, 289:7164-7177.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 7164-7177
-
-
Brendel, J.1
-
35
-
-
84899810698
-
In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex
-
Plagens A., et al. In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex. Nucleic Acids Res. 2014, 42:5125-5138.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 5125-5138
-
-
Plagens, A.1
-
36
-
-
84885336337
-
Structure of the CRISPR interference complex CSM reveals key similarities with Cascade
-
Rouillon C., et al. Structure of the CRISPR interference complex CSM reveals key similarities with Cascade. Mol. Cell 2013, 52:124-134.
-
(2013)
Mol. Cell
, vol.52
, pp. 124-134
-
-
Rouillon, C.1
-
37
-
-
84884765703
-
A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs
-
Hatoum-Aslan A., et al. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs. J. Biol. Chem. 2013, 288:27888-27897.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 27888-27897
-
-
Hatoum-Aslan, A.1
-
38
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
Hale C.R., et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009, 139:945-956.
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
-
39
-
-
84856778250
-
Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
-
Zhang J., et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell 2012, 45:303-313.
-
(2012)
Mol. Cell
, vol.45
, pp. 303-313
-
-
Zhang, J.1
-
40
-
-
84867678349
-
Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases
-
Garside E.L., et al. Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. RNA 2012, 18:2020-2028.
-
(2012)
RNA
, vol.18
, pp. 2020-2028
-
-
Garside, E.L.1
-
41
-
-
84885180803
-
Conservation and variability in the structure and function of the Cas5d endoribonuclease in the CRISPR-mediated microbial immune system
-
Koo Y., et al. Conservation and variability in the structure and function of the Cas5d endoribonuclease in the CRISPR-mediated microbial immune system. J. Mol. Biol. 2013, 425:3799-3810.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 3799-3810
-
-
Koo, Y.1
-
42
-
-
84898952727
-
Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system
-
Punetha A., et al. Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system. Nucleic Acids Res. 2014, 42:3846-3856.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 3846-3856
-
-
Punetha, A.1
-
43
-
-
75749118174
-
Self versus non-self discrimination during CRISPR RNA-directed immunity
-
Marraffini L.A., Sontheimer E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 2010, 463:568-571.
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
44
-
-
84861357119
-
Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax
-
Plagens A., et al. Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J. Bacteriol. 2012, 194:2491-2500.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 2491-2500
-
-
Plagens, A.1
-
45
-
-
84874172103
-
CRISPR-Cas systems in the cyanobacterium Synechocystis sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein
-
Scholz I., et al. CRISPR-Cas systems in the cyanobacterium Synechocystis sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein. PLoS ONE 2013, 8:e56470.
-
(2013)
PLoS ONE
, vol.8
-
-
Scholz, I.1
-
46
-
-
34248400310
-
A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes
-
Haft D.H., et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 2005, 1:e60.
-
(2005)
PLoS Comput. Biol.
, vol.1
-
-
Haft, D.H.1
-
47
-
-
84863116866
-
The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex
-
Wang R., et al. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex. Protein Sci. 2012, 21:405-417.
-
(2012)
Protein Sci.
, vol.21
, pp. 405-417
-
-
Wang, R.1
-
48
-
-
84907208955
-
Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli
-
Jackson R.N., et al. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 2014, 345:1473-1479.
-
(2014)
Science
, vol.345
, pp. 1473-1479
-
-
Jackson, R.N.1
-
49
-
-
84908445494
-
Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli
-
Published online August 12, 2014
-
Zhao, H. et al. (2014) Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature. Published online August 12, 2014, . doi:10.1038/nature13733.
-
(2014)
Nature
-
-
Zhao, H.1
-
50
-
-
84907204893
-
Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
-
Mulepati S., et al. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 2014, 345:1479-1484.
-
(2014)
Science
, vol.345
, pp. 1479-1484
-
-
Mulepati, S.1
-
51
-
-
84877757610
-
Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing
-
Reeks J., et al. Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochem. J. 2013, 452:223-230.
-
(2013)
Biochem. J.
, vol.452
, pp. 223-230
-
-
Reeks, J.1
-
52
-
-
0037079680
-
A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis
-
Makarova K.S., et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002, 30:482-496.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 482-496
-
-
Makarova, K.S.1
-
53
-
-
84862813430
-
Crystal structure of a Cas6 paralogous protein from Pyrococcus furiosus
-
Park H-M., et al. Crystal structure of a Cas6 paralogous protein from Pyrococcus furiosus. Proteins 2012, 80:1895-1900.
-
(2012)
Proteins
, vol.80
, pp. 1895-1900
-
-
Park, H.-M.1
-
54
-
-
79956084965
-
Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum
-
Przybilski R., et al. Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum. RNA Biol. 2011, 8:517-528.
-
(2011)
RNA Biol.
, vol.8
, pp. 517-528
-
-
Przybilski, R.1
-
55
-
-
84877745179
-
Comparative analysis of Cas6b processing and CRISPR RNA stability
-
Richter H., et al. Comparative analysis of Cas6b processing and CRISPR RNA stability. RNA Biol. 2013, 10:700-707.
-
(2013)
RNA Biol.
, vol.10
, pp. 700-707
-
-
Richter, H.1
-
56
-
-
78149355930
-
Binding and cleavage of CRISPR RNA by Cas6
-
Carte J., et al. Binding and cleavage of CRISPR RNA by Cas6. RNA 2010, 16:2181-2188.
-
(2010)
RNA
, vol.16
, pp. 2181-2188
-
-
Carte, J.1
-
57
-
-
84862190458
-
Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA
-
Haurwitz R.E., et al. Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. EMBO J. 2012, 31:2824-2832.
-
(2012)
EMBO J.
, vol.31
, pp. 2824-2832
-
-
Haurwitz, R.E.1
-
58
-
-
33646538487
-
RNA recognition and cleavage by a splicing endonuclease
-
Xue S., et al. RNA recognition and cleavage by a splicing endonuclease. Science 2006, 312:906-910.
-
(2006)
Science
, vol.312
, pp. 906-910
-
-
Xue, S.1
-
59
-
-
84875832964
-
RNA-protein analysis using a conditional CRISPR nuclease
-
Lee H.Y., et al. RNA-protein analysis using a conditional CRISPR nuclease. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5416-5421.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5416-5421
-
-
Lee, H.Y.1
-
60
-
-
84903202938
-
Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system
-
Sokolowski R.D., et al. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system. Nucleic Acids Res. 2014, 42:6532-6541.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 6532-6541
-
-
Sokolowski, R.D.1
-
61
-
-
84874195392
-
A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
-
Deng L., et al. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 2013, 87:1088-1099.
-
(2013)
Mol. Microbiol.
, vol.87
, pp. 1088-1099
-
-
Deng, L.1
-
62
-
-
84903465255
-
The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus
-
Carte J., et al. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol. Microbiol. 2014, 93:98-112.
-
(2014)
Mol. Microbiol.
, vol.93
, pp. 98-112
-
-
Carte, J.1
-
63
-
-
84879023629
-
Two CRISPR-Cas systems in Methanosarcina mazei strain Gö1 display common processing features despite belonging to different types I and III
-
Nickel L., et al. Two CRISPR-Cas systems in Methanosarcina mazei strain Gö1 display common processing features despite belonging to different types I and III. RNA Biol. 2013, 10:779-791.
-
(2013)
RNA Biol.
, vol.10
, pp. 779-791
-
-
Nickel, L.1
-
64
-
-
84879323584
-
Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags
-
Salvail-Lacoste A., et al. Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags. RNA 2013, 19:1003-1014.
-
(2013)
RNA
, vol.19
, pp. 1003-1014
-
-
Salvail-Lacoste, A.1
-
65
-
-
84901195977
-
Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells
-
Nissim L., et al. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 2014, 54:698-710.
-
(2014)
Mol. Cell
, vol.54
, pp. 698-710
-
-
Nissim, L.1
-
66
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai S.Q., et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 2014, 32:569-576.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
-
67
-
-
84867389802
-
RNA processing enables predictable programming of gene expression
-
Qi L., et al. RNA processing enables predictable programming of gene expression. Nat. Biotechnol. 2012, 30:1002-1006.
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 1002-1006
-
-
Qi, L.1
-
68
-
-
84875791334
-
An RNA element in human interleukin 6 confers escape from degradation by the gammaherpesvirus SOX protein
-
Hutin S., et al. An RNA element in human interleukin 6 confers escape from degradation by the gammaherpesvirus SOX protein. J. Virol. 2013, 87:4672-4682.
-
(2013)
J. Virol.
, vol.87
, pp. 4672-4682
-
-
Hutin, S.1
|