-
1
-
-
84949309751
-
The high-resolution structure of activated opsin reveals a conserved solvent network in the transmembrane region essential for activation
-
This high resolution structure of opsin in its active state, in complex with GαCT, revealed the most extensive network of ordered water molecules observed in a GPCR structure to date. This work adds to a growing body of evidence suggesting that polar networks play an integral role in GPCR activation (see also Ref. [8••]).
-
1• Blankenship, E., Vahedi-Faridi, A., Lodowski, D.T., The high-resolution structure of activated opsin reveals a conserved solvent network in the transmembrane region essential for activation. Structure 23 (2015), 2358–2364 This high resolution structure of opsin in its active state, in complex with GαCT, revealed the most extensive network of ordered water molecules observed in a GPCR structure to date. This work adds to a growing body of evidence suggesting that polar networks play an integral role in GPCR activation (see also Ref. [8••]).
-
(2015)
Structure
, vol.23
, pp. 2358-2364
-
-
Blankenship, E.1
Vahedi-Faridi, A.2
Lodowski, D.T.3
-
2
-
-
79953234218
-
Crystal structure of metarhodopsin II
-
2 Choe, H.W., Kim, Y.J., Park, J.H., Morizumi, T., Pai, E.F., Krauss, N., Hofmann, K.P., Scheerer, P., Ernst, O.P., Crystal structure of metarhodopsin II. Nature 471 (2011), 651–655.
-
(2011)
Nature
, vol.471
, pp. 651-655
-
-
Choe, H.W.1
Kim, Y.J.2
Park, J.H.3
Morizumi, T.4
Pai, E.F.5
Krauss, N.6
Hofmann, K.P.7
Scheerer, P.8
Ernst, O.P.9
-
3
-
-
84855990615
-
protein binding site in the structure of constitutively active metarhodopsin-II
-
3 Deupi, X., Edwards, P., Singhal, A., Nickle, B., Oprian, D., Schertler, G., Standfuss J: Stabilized, G., protein binding site in the structure of constitutively active metarhodopsin-II. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 119–124.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 119-124
-
-
Deupi, X.1
Edwards, P.2
Singhal, A.3
Nickle, B.4
Oprian, D.5
Schertler, G.6
Standfuss J: Stabilized, G.7
-
4
-
-
84885448271
-
Opsin, a structural model for olfactory receptors?
-
4 Park, J.H., Morizumi, T., Li, Y., Hong, J.E., Pai, E.F., Hofmann, K.P., Choe, H.W., Ernst, O.P., Opsin, a structural model for olfactory receptors?. Angew. Chem. Int. Ed. Engl. 52 (2013), 11021–11024.
-
(2013)
Angew. Chem. Int. Ed. Engl.
, vol.52
, pp. 11021-11024
-
-
Park, J.H.1
Morizumi, T.2
Li, Y.3
Hong, J.E.4
Pai, E.F.5
Hofmann, K.P.6
Choe, H.W.7
Ernst, O.P.8
-
5
-
-
52949102889
-
Crystal structure of opsin in its G-protein-interacting conformation
-
5 Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krauss, N., Choe, H.W., Hofmann, K.P., Ernst, O.P., Crystal structure of opsin in its G-protein-interacting conformation. Nature 455 (2008), 497–502.
-
(2008)
Nature
, vol.455
, pp. 497-502
-
-
Scheerer, P.1
Park, J.H.2
Hildebrand, P.W.3
Kim, Y.J.4
Krauss, N.5
Choe, H.W.6
Hofmann, K.P.7
Ernst, O.P.8
-
6
-
-
84878582491
-
Insights into congenital stationary night blindness based on the structure of G90D rhodopsin
-
6 Singhal, A., Ostermaier, M.K., Vishnivetskiy, S.A., Panneels, V., Homan, K.T., Tesmer, J.J., Veprintsev, D., Deupi, X., Gurevich, V.V., Schertler, G.F., et al. Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO Rep. 14 (2013), 520–526.
-
(2013)
EMBO Rep.
, vol.14
, pp. 520-526
-
-
Singhal, A.1
Ostermaier, M.K.2
Vishnivetskiy, S.A.3
Panneels, V.4
Homan, K.T.5
Tesmer, J.J.6
Veprintsev, D.7
Deupi, X.8
Gurevich, V.V.9
Schertler, G.F.10
-
7
-
-
79953242234
-
The structural basis of agonist-induced activation in constitutively active rhodopsin
-
7 Standfuss, J., Edwards, P.C., D'Antona, A., Fransen, M., Xie, G., Oprian, D.D., Schertler, G.F., The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471 (2011), 656–660.
-
(2011)
Nature
, vol.471
, pp. 656-660
-
-
Standfuss, J.1
Edwards, P.C.2
D'Antona, A.3
Fransen, M.4
Xie, G.5
Oprian, D.D.6
Schertler, G.F.7
-
8
-
-
84939795137
-
Structural insights into micro-opioid receptor activation
-
2AR. The high resolution nature of this structure also revealed novel details about rearrangements in a network of ordered water molecules during the transition from the inactive to active state.
-
2AR. The high resolution nature of this structure also revealed novel details about rearrangements in a network of ordered water molecules during the transition from the inactive to active state.
-
(2015)
Nature
, vol.524
, pp. 315-321
-
-
Huang, W.1
Manglik, A.2
Venkatakrishnan, A.J.3
Laeremans, T.4
Feinberg, E.N.5
Sanborn, A.L.6
Kato, H.E.7
Livingston, K.E.8
Thorsen, T.S.9
Kling, R.C.10
-
9
-
-
84889564886
-
Activation and allosteric modulation of a muscarinic acetylcholine receptor
-
9 Kruse, A.C., Ring, A.M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hubner, H., Pardon, E., Valant, C., Sexton, P.M., et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504 (2013), 101–106.
-
(2013)
Nature
, vol.504
, pp. 101-106
-
-
Kruse, A.C.1
Ring, A.M.2
Manglik, A.3
Hu, J.4
Hu, K.5
Eitel, K.6
Hubner, H.7
Pardon, E.8
Valant, C.9
Sexton, P.M.10
-
10
-
-
78651411166
-
Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor
-
10 Rasmussen, S.G., Choi, H.J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, B.T., Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469 (2011), 175–180.
-
(2011)
Nature
, vol.469
, pp. 175-180
-
-
Rasmussen, S.G.1
Choi, H.J.2
Fung, J.J.3
Pardon, E.4
Casarosa, P.5
Chae, P.S.6
Devree, B.T.7
Rosenbaum, D.M.8
Thian, F.S.9
Kobilka, T.S.10
-
11
-
-
84886947656
-
Adrenaline-activated structure of beta2-adrenoceptor stabilized by an engineered nanobody
-
11 Ring, A.M., Manglik, A., Kruse, A.C., Enos, M.D., Weis, W.I., Garcia, K.C., Kobilka, B.K., Adrenaline-activated structure of beta2-adrenoceptor stabilized by an engineered nanobody. Nature 502 (2013), 575–579.
-
(2013)
Nature
, vol.502
, pp. 575-579
-
-
Ring, A.M.1
Manglik, A.2
Kruse, A.C.3
Enos, M.D.4
Weis, W.I.5
Garcia, K.C.6
Kobilka, B.K.7
-
12
-
-
84904704143
-
Covalent agonists for studying G protein-coupled receptor activation
-
12 Weichert, D., Kruse, A.C., Manglik, A., Hiller, C., Zhang, C., Hubner, H., Kobilka, B.K., Gmeiner, P., Covalent agonists for studying G protein-coupled receptor activation. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 10744–10748.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 10744-10748
-
-
Weichert, D.1
Kruse, A.C.2
Manglik, A.3
Hiller, C.4
Zhang, C.5
Hubner, H.6
Kobilka, B.K.7
Gmeiner, P.8
-
13
-
-
80051658642
-
Crystal structure of the beta2 adrenergic receptor-Gs protein complex
-
13 Rasmussen, S.G., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477 (2011), 549–555.
-
(2011)
Nature
, vol.477
, pp. 549-555
-
-
Rasmussen, S.G.1
DeVree, B.T.2
Zou, Y.3
Kruse, A.C.4
Chung, K.Y.5
Kobilka, T.S.6
Thian, F.S.7
Chae, P.S.8
Pardon, E.9
Calinski, D.10
-
14
-
-
84916610476
-
Crystal structure of a common GPCR-binding interface for G protein and arrestin
-
This structure of opsin bound to an arrestin-derived peptide provided the first insight into the potential organisation of the opsin–arrestin interface.
-
14• Szczepek, M., Beyriere, F., Hofmann, K.P., Elgeti, M., Kazmin, R., Rose, A., Bartl, F.J., von Stetten, D., Heck, M., Sommer, M.E., et al. Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun., 5, 2014, 4801 This structure of opsin bound to an arrestin-derived peptide provided the first insight into the potential organisation of the opsin–arrestin interface.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4801
-
-
Szczepek, M.1
Beyriere, F.2
Hofmann, K.P.3
Elgeti, M.4
Kazmin, R.5
Rose, A.6
Bartl, F.J.7
von Stetten, D.8
Heck, M.9
Sommer, M.E.10
-
15
-
-
84938359988
-
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser
-
This is the first structure of a GPCR–arrestin complex. The structure was solved by femtosecond X-ray laser crystallography, highlighting the usefulness of this technique in the structure determination of challenging proteins. The structure revealed the molecular organisation of the opsin–arrestin interface and provides novel insight into the molecular basis for biased signalling.
-
15•• Kang, Y., Zhou, X.E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T.A., Yefanov, O., Han, G.W., et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523 (2015), 561–567 This is the first structure of a GPCR–arrestin complex. The structure was solved by femtosecond X-ray laser crystallography, highlighting the usefulness of this technique in the structure determination of challenging proteins. The structure revealed the molecular organisation of the opsin–arrestin interface and provides novel insight into the molecular basis for biased signalling.
-
(2015)
Nature
, vol.523
, pp. 561-567
-
-
Kang, Y.1
Zhou, X.E.2
Gao, X.3
He, Y.4
Liu, W.5
Ishchenko, A.6
Barty, A.7
White, T.A.8
Yefanov, O.9
Han, G.W.10
-
17
-
-
77957055780
-
Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors
-
S.C. Sealfon P.M. Conn Academic Press
-
17 Ballesteros, J.A., Weinstein, H., Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. Sealfon, S.C., Conn, P.M., (eds.) Methods in Neurosciences, vol. 25, 1995, Academic Press, 366–428.
-
(1995)
Methods in Neurosciences
, vol.25
, pp. 366-428
-
-
Ballesteros, J.A.1
Weinstein, H.2
-
18
-
-
84983806015
-
Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region
-
A comprehensive analysis of 27 GPCR structures highlights the diversity of mechanisms for the activation of the receptor by agonists in the extracellular half of the receptor and the conserved conformational changes this elicits in the intracellular half of the receptor.
-
18• Venkatakrishnan, A.J., Deupi, X., Lebon, G., Heydenreich, F.M., Flock, T., Miljus, T., Balaji, S., Bouvier, M., Veprintsev, D.B., Tate, C.G., et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536 (2016), 484–487 A comprehensive analysis of 27 GPCR structures highlights the diversity of mechanisms for the activation of the receptor by agonists in the extracellular half of the receptor and the conserved conformational changes this elicits in the intracellular half of the receptor.
-
(2016)
Nature
, vol.536
, pp. 484-487
-
-
Venkatakrishnan, A.J.1
Deupi, X.2
Lebon, G.3
Heydenreich, F.M.4
Flock, T.5
Miljus, T.6
Balaji, S.7
Bouvier, M.8
Veprintsev, D.B.9
Tate, C.G.10
-
19
-
-
79959564813
-
Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation
-
19 Lebon, G., Warne, T., Edwards, P.C., Bennett, K., Langmead, C.J., Leslie, A.G., Tate, C.G., Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474 (2011), 521–525.
-
(2011)
Nature
, vol.474
, pp. 521-525
-
-
Lebon, G.1
Warne, T.2
Edwards, P.C.3
Bennett, K.4
Langmead, C.J.5
Leslie, A.G.6
Tate, C.G.7
-
20
-
-
84935522404
-
Molecular determinants of CGS21680 binding to the human adenosine A2A receptor
-
20 Lebon, G., Edwards, P.C., Leslie, A.G., Tate, C.G., Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol. Pharmacol. 87 (2015), 907–915.
-
(2015)
Mol. Pharmacol.
, vol.87
, pp. 907-915
-
-
Lebon, G.1
Edwards, P.C.2
Leslie, A.G.3
Tate, C.G.4
-
21
-
-
79954782236
-
Structure of an agonist-bound human A2A adenosine receptor
-
21 Xu, F., Wu, H., Katritch, V., Han, G.W., Jacobson, K.A., Gao, Z.G., Cherezov, V., Stevens, R.C., Structure of an agonist-bound human A2A adenosine receptor. Science 332 (2011), 322–327.
-
(2011)
Science
, vol.332
, pp. 322-327
-
-
Xu, F.1
Wu, H.2
Katritch, V.3
Han, G.W.4
Jacobson, K.A.5
Gao, Z.G.6
Cherezov, V.7
Stevens, R.C.8
-
22
-
-
84858034356
-
Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design
-
22 Congreve, M., Andrews, S.P., Dore, A.S., Hollenstein, K., Hurrell, E., Langmead, C.J., Mason, J.S., Ng, I.W., Tehan, B., Zhukov, A., et al. Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J. Med. Chem. 55 (2012), 1898–1903.
-
(2012)
J. Med. Chem.
, vol.55
, pp. 1898-1903
-
-
Congreve, M.1
Andrews, S.P.2
Dore, A.S.3
Hollenstein, K.4
Hurrell, E.5
Langmead, C.J.6
Mason, J.S.7
Ng, I.W.8
Tehan, B.9
Zhukov, A.10
-
23
-
-
79960181417
-
Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine
-
23 Dore, A.S., Robertson, N., Errey, J.C., Ng, I., Hollenstein, K., Tehan, B., Hurrell, E., Bennett, K., Congreve, M., Magnani, F., et al. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19 (2011), 1283–1293.
-
(2011)
Structure
, vol.19
, pp. 1283-1293
-
-
Dore, A.S.1
Robertson, N.2
Errey, J.C.3
Ng, I.4
Hollenstein, K.5
Tehan, B.6
Hurrell, E.7
Bennett, K.8
Congreve, M.9
Magnani, F.10
-
24
-
-
84862776818
-
G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody
-
24 Hino, T., Arakawa, T., Iwanari, H., Yurugi-Kobayashi, T., Ikeda-Suno, C., Nakada-Nakura, Y., Kusano-Arai, O., Weyand, S., Shimamura, T., Nomura, N., et al. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482 (2012), 237–240.
-
(2012)
Nature
, vol.482
, pp. 237-240
-
-
Hino, T.1
Arakawa, T.2
Iwanari, H.3
Yurugi-Kobayashi, T.4
Ikeda-Suno, C.5
Nakada-Nakura, Y.6
Kusano-Arai, O.7
Weyand, S.8
Shimamura, T.9
Nomura, N.10
-
25
-
-
56749103466
-
The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist
-
25 Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P., Stevens, R.C., The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322 (2008), 1211–1217.
-
(2008)
Science
, vol.322
, pp. 1211-1217
-
-
Jaakola, V.P.1
Griffith, M.T.2
Hanson, M.A.3
Cherezov, V.4
Chien, E.Y.5
Lane, J.R.6
Ijzerman, A.P.7
Stevens, R.C.8
-
26
-
-
84937958846
-
Structural prerequisites for G-protein activation by the neurotensin receptor
-
This paper reports the structure of minimally thermostabilised neurotensin receptor mutants in their intermediate-active conformation, and delineates the effect of thermostabilising mutations on G protein coupling.
-
26• Krumm, B.E., White, J.F., Shah, P., Grisshammer, R., Structural prerequisites for G-protein activation by the neurotensin receptor. Nat. Commun., 6, 2015, 7895 This paper reports the structure of minimally thermostabilised neurotensin receptor mutants in their intermediate-active conformation, and delineates the effect of thermostabilising mutations on G protein coupling.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7895
-
-
Krumm, B.E.1
White, J.F.2
Shah, P.3
Grisshammer, R.4
-
27
-
-
84867840947
-
Structure of the agonist-bound neurotensin receptor
-
27 White, J.F., Noinaj, N., Shibata, Y., Love, J., Kloss, B., Xu, F., Gvozdenovic-Jeremic, J., Shah, P., Shiloach, J., Tate, C.G., et al. Structure of the agonist-bound neurotensin receptor. Nature 490 (2012), 508–5513.
-
(2012)
Nature
, vol.490
, pp. 508-5513
-
-
White, J.F.1
Noinaj, N.2
Shibata, Y.3
Love, J.4
Kloss, B.5
Xu, F.6
Gvozdenovic-Jeremic, J.7
Shah, P.8
Shiloach, J.9
Tate, C.G.10
-
28
-
-
78651405537
-
The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor
-
28 Warne, T., Moukhametzianov, R., Baker, J.G., Nehme, R., Edwards, P.C., Leslie, A.G., Schertler, G.F., Tate, C.G., The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469 (2011), 241–244.
-
(2011)
Nature
, vol.469
, pp. 241-244
-
-
Warne, T.1
Moukhametzianov, R.2
Baker, J.G.3
Nehme, R.4
Edwards, P.C.5
Leslie, A.G.6
Schertler, G.F.7
Tate, C.G.8
-
29
-
-
78651399683
-
Structure and function of an irreversible agonist-beta(2) adrenoceptor complex
-
29 Rosenbaum, D.M., Zhang, C., Lyons, J.A., Holl, R., Aragao, D., Arlow, D.H., Rasmussen, S.G., Choi, H.J., Devree, B.T., Sunahara, R.K., et al. Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469 (2011), 236–240.
-
(2011)
Nature
, vol.469
, pp. 236-240
-
-
Rosenbaum, D.M.1
Zhang, C.2
Lyons, J.A.3
Holl, R.4
Aragao, D.5
Arlow, D.H.6
Rasmussen, S.G.7
Choi, H.J.8
Devree, B.T.9
Sunahara, R.K.10
-
30
-
-
84968547343
-
Activation of the A2A adenosine G-protein-coupled receptor by conformational selection
-
2AR that exist in equilibrium in the absence of ligand. Partial agonists and full agonists increased the population of different active states, indicating that partial agonism is achieved through selection of a distinct conformational state.
-
2AR that exist in equilibrium in the absence of ligand. Partial agonists and full agonists increased the population of different active states, indicating that partial agonism is achieved through selection of a distinct conformational state.
-
(2016)
Nature
, vol.533
, pp. 265-268
-
-
Ye, L.1
Van Eps, N.2
Zimmer, M.3
Ernst, O.P.4
Prosser, R.S.5
-
31
-
-
84930226866
-
Structural insights into the dynamic process of beta2-adrenergic receptor signaling
-
2AR.
-
2AR.
-
(2015)
Cell
, vol.161
, pp. 1101-1111
-
-
Manglik, A.1
Kim, T.H.2
Masureel, M.3
Altenbach, C.4
Yang, Z.5
Hilger, D.6
Lerch, M.T.7
Kobilka, T.S.8
Thian, F.S.9
Hubbell, W.L.10
-
32
-
-
84865304129
-
Agonist-bound structures of G protein-coupled receptors
-
32 Lebon, G., Warne, T., Tate, C.G., Agonist-bound structures of G protein-coupled receptors. Curr. Opin. Struct. Biol. 22 (2012), 482–490.
-
(2012)
Curr. Opin. Struct. Biol.
, vol.22
, pp. 482-490
-
-
Lebon, G.1
Warne, T.2
Tate, C.G.3
-
33
-
-
0036153903
-
Human A(2A) adenosine receptors: high-affinity agonist binding to receptor-G protein complexes containing Gbeta(4)
-
33 Murphree, L.J., Marshall, M.A., Rieger, J.M., MacDonald, T.L., Linden, J., Human A(2A) adenosine receptors: high-affinity agonist binding to receptor-G protein complexes containing Gbeta(4). Mol. Pharmacol. 61 (2002), 455–462.
-
(2002)
Mol. Pharmacol.
, vol.61
, pp. 455-462
-
-
Murphree, L.J.1
Marshall, M.A.2
Rieger, J.M.3
MacDonald, T.L.4
Linden, J.5
-
34
-
-
85018328852
-
Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation
-
s is a useful surrogate for heterotrimeric G proteins for the characterisation and crystallisation of GPCRs in their active conformation. The work also provided novel insight into the mechanism of allosteric activation of G proteins by GPCRs.
-
s is a useful surrogate for heterotrimeric G proteins for the characterisation and crystallisation of GPCRs in their active conformation. The work also provided novel insight into the mechanism of allosteric activation of G proteins by GPCRs.
-
(2016)
Protein Eng. Des. Sel.
, vol.29
, pp. 583-594
-
-
Carpenter, B.1
Tate, C.G.2
-
35
-
-
84873298278
-
The dynamic process of beta(2)-adrenergic receptor activation
-
35 Nygaard, R., Zou, Y., Dror, R.O., Mildorf, T.J., Arlow, D.H., Manglik, A., Pan, A.C., Liu, C.W., Fung, J.J., Bokoch, M.P., et al. The dynamic process of beta(2)-adrenergic receptor activation. Cell 152 (2013), 532–542.
-
(2013)
Cell
, vol.152
, pp. 532-542
-
-
Nygaard, R.1
Zou, Y.2
Dror, R.O.3
Mildorf, T.J.4
Arlow, D.H.5
Manglik, A.6
Pan, A.C.7
Liu, C.W.8
Fung, J.J.9
Bokoch, M.P.10
-
36
-
-
84939832832
-
Propagation of conformational changes during mu-opioid receptor activation
-
36 Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B.K., Demene, H., Granier, S., Propagation of conformational changes during mu-opioid receptor activation. Nature 524 (2015), 375–378.
-
(2015)
Nature
, vol.524
, pp. 375-378
-
-
Sounier, R.1
Mas, C.2
Steyaert, J.3
Laeremans, T.4
Manglik, A.5
Huang, W.6
Kobilka, B.K.7
Demene, H.8
Granier, S.9
-
37
-
-
0032402450
-
Molecular basis of receptor/G-protein-coupling selectivity
-
37 Wess, J., Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther. 80 (1998), 231–264.
-
(1998)
Pharmacol. Ther.
, vol.80
, pp. 231-264
-
-
Wess, J.1
-
38
-
-
84981517053
-
GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling
-
38 Thomsen, A.R., Plouffe, B., Cahill, T.J. 3rd, Shukla, A.K., Tarrasch, J.T., Dosey, A.M., Kahsai, A.W., Strachan, R.T., Pani, B., Mahoney, J.P., et al. GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166 (2016), 907–919.
-
(2016)
Cell
, vol.166
, pp. 907-919
-
-
Thomsen, A.R.1
Plouffe, B.2
Cahill, T.J.3
Shukla, A.K.4
Tarrasch, J.T.5
Dosey, A.M.6
Kahsai, A.W.7
Strachan, R.T.8
Pani, B.9
Mahoney, J.P.10
-
39
-
-
84862776738
-
Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR
-
39 Liu, J.J., Horst, R., Katritch, V., Stevens, R.C., Wuthrich, K., Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335 (2012), 1106–1110.
-
(2012)
Science
, vol.335
, pp. 1106-1110
-
-
Liu, J.J.1
Horst, R.2
Katritch, V.3
Stevens, R.C.4
Wuthrich, K.5
-
40
-
-
84877631485
-
Structural features for functional selectivity at serotonin receptors
-
40 Wacker, D., Wang, C., Katritch, V., Han, G.W., Huang, X.P., Vardy, E., McCorvy, J.D., Jiang, Y., Chu, M., Siu, F.Y., et al. Structural features for functional selectivity at serotonin receptors. Science 340 (2013), 615–619.
-
(2013)
Science
, vol.340
, pp. 615-619
-
-
Wacker, D.1
Wang, C.2
Katritch, V.3
Han, G.W.4
Huang, X.P.5
Vardy, E.6
McCorvy, J.D.7
Jiang, Y.8
Chu, M.9
Siu, F.Y.10
-
41
-
-
0027241013
-
Visual arrestin interaction with rhodopsin: sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin
-
41 Gurevich, V.V., Benovic, J.L., Visual arrestin interaction with rhodopsin: sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J. Biol. Chem. 268 (1993), 11628–11638.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 11628-11638
-
-
Gurevich, V.V.1
Benovic, J.L.2
-
42
-
-
84893440910
-
Functional map of arrestin-1 at single amino acid resolution
-
42 Ostermaier, M.K., Peterhans, C., Jaussi, R., Deupi, X., Standfuss, J., Functional map of arrestin-1 at single amino acid resolution. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 1825–1830.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 1825-1830
-
-
Ostermaier, M.K.1
Peterhans, C.2
Jaussi, R.3
Deupi, X.4
Standfuss, J.5
-
43
-
-
84960078752
-
A structural snapshot of the rhodopsin-arrestin complex
-
43 Kang, Y., Gao, X., Zhou, X.E., He, Y., Melcher, K., Xu, H.E., A structural snapshot of the rhodopsin-arrestin complex. FEBS J. 283 (2016), 816–821.
-
(2016)
FEBS J.
, vol.283
, pp. 816-821
-
-
Kang, Y.1
Gao, X.2
Zhou, X.E.3
He, Y.4
Melcher, K.5
Xu, H.E.6
-
44
-
-
84873685831
-
Molecular signatures of G-protein-coupled receptors
-
44 Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., Babu, M.M., Molecular signatures of G-protein-coupled receptors. Nature 494 (2013), 185–194.
-
(2013)
Nature
, vol.494
, pp. 185-194
-
-
Venkatakrishnan, A.J.1
Deupi, X.2
Lebon, G.3
Tate, C.G.4
Schertler, G.F.5
Babu, M.M.6
-
45
-
-
84939522532
-
Universal allosteric mechanism for Galpha activation by GPCRs
-
A comprehensive analysis of all G proteins highlights the conserved pathway of activation within the Gα subunit. A unified nomenclature for all residues in G proteins is also presented, which will simplify comparison of functional residues between distantly related proteins.
-
45• Flock, T., Ravarani, C.N., Sun, D., Venkatakrishnan, A.J., Kayikci, M., Tate, C.G., Veprintsev, D.B., Babu, M.M., Universal allosteric mechanism for Galpha activation by GPCRs. Nature 524 (2015), 173–179 A comprehensive analysis of all G proteins highlights the conserved pathway of activation within the Gα subunit. A unified nomenclature for all residues in G proteins is also presented, which will simplify comparison of functional residues between distantly related proteins.
-
(2015)
Nature
, vol.524
, pp. 173-179
-
-
Flock, T.1
Ravarani, C.N.2
Sun, D.3
Venkatakrishnan, A.J.4
Kayikci, M.5
Tate, C.G.6
Veprintsev, D.B.7
Babu, M.M.8
-
46
-
-
0027310612
-
Naturally occurring antibodies devoid of light chains
-
46 Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., Bendahman, N., Hamers, R., Naturally occurring antibodies devoid of light chains. Nature 363 (1993), 446–448.
-
(1993)
Nature
, vol.363
, pp. 446-448
-
-
Hamers-Casterman, C.1
Atarhouch, T.2
Muyldermans, S.3
Robinson, G.4
Hamers, C.5
Songa, E.B.6
Bendahman, N.7
Hamers, R.8
-
47
-
-
84894623293
-
A general protocol for the generation of nanobodies for structural biology
-
Nanobodies have proved to be one of the best tools for the crystallisation of GPCRs in their active conformation. This paper provides detailed protocols for the selection of nanobodies for structural biology applications.
-
47• Pardon, E., Laeremans, T., Triest, S., Rasmussen, S.G., Wohlkonig, A., Ruf, A., Muyldermans, S., Hol, W.G., Kobilka, B.K., Steyaert, J., A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9 (2014), 674–693 Nanobodies have proved to be one of the best tools for the crystallisation of GPCRs in their active conformation. This paper provides detailed protocols for the selection of nanobodies for structural biology applications.
-
(2014)
Nat. Protoc.
, vol.9
, pp. 674-693
-
-
Pardon, E.1
Laeremans, T.2
Triest, S.3
Rasmussen, S.G.4
Wohlkonig, A.5
Ruf, A.6
Muyldermans, S.7
Hol, W.G.8
Kobilka, B.K.9
Steyaert, J.10
-
48
-
-
80052083563
-
Nanobody stabilization of G protein-coupled receptor conformational states
-
48 Steyaert, J., Kobilka, B.K., Nanobody stabilization of G protein-coupled receptor conformational states. Curr. Opin. Struct. Biol. 21 (2011), 567–572.
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 567-572
-
-
Steyaert, J.1
Kobilka, B.K.2
-
49
-
-
84954323790
-
Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors
-
This is a fascinating and comprehensive study of the differential coupling of 14 different G proteins to four different GPCRs in the cellular context. Both the kinetics and the magnitude of the responses varied and were important in determining efficacy and potency of coupling.
-
49•• Masuho, I., Ostrovskaya, O., Kramer, G.M., Jones, C.D., Xie, K., Martemyanov, K.A., Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci. Signal., 2015, 8ra123 This is a fascinating and comprehensive study of the differential coupling of 14 different G proteins to four different GPCRs in the cellular context. Both the kinetics and the magnitude of the responses varied and were important in determining efficacy and potency of coupling.
-
(2015)
Sci. Signal.
, pp. 8ra123
-
-
Masuho, I.1
Ostrovskaya, O.2
Kramer, G.M.3
Jones, C.D.4
Xie, K.5
Martemyanov, K.A.6
-
50
-
-
36448995359
-
High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor
-
50 Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318 (2007), 1258–1265.
-
(2007)
Science
, vol.318
, pp. 1258-1265
-
-
Cherezov, V.1
Rosenbaum, D.M.2
Hanson, M.A.3
Rasmussen, S.G.4
Thian, F.S.5
Kobilka, T.S.6
Choi, H.J.7
Kuhn, P.8
Weis, W.I.9
Kobilka, B.K.10
-
51
-
-
84976540768
-
GPCRdb: the G protein-coupled receptor database - an introduction
-
The database GPCRdb is a fantastic resource for everyone working on GPCRs and it has just got even better, with new tools for structure-based sequence alignments and data presentation.
-
51• Munk, C., Isberg, V., Mordalski, S., Harpsoe, K., Rataj, K., Hauser, A.S., Kolb, P., Bojarski, A.J., Vriend, G., Gloriam, D.E., GPCRdb: the G protein-coupled receptor database - an introduction. Br. J. Pharmacol. 173 (2016), 2195–2207 The database GPCRdb is a fantastic resource for everyone working on GPCRs and it has just got even better, with new tools for structure-based sequence alignments and data presentation.
-
(2016)
Br. J. Pharmacol.
, vol.173
, pp. 2195-2207
-
-
Munk, C.1
Isberg, V.2
Mordalski, S.3
Harpsoe, K.4
Rataj, K.5
Hauser, A.S.6
Kolb, P.7
Bojarski, A.J.8
Vriend, G.9
Gloriam, D.E.10
|