-
1
-
-
77951877209
-
Tracking G-protein-coupled receptor activation using genetically encoded infrared probes
-
Ye S, et al. (2010) Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464:1386-1389.
-
(2010)
Nature
, vol.464
, pp. 1386-1389
-
-
Ye, S.1
-
2
-
-
0034604451
-
Crystal structure of rhodopsin: A G protein-coupled receptor
-
DOI 10.1126/science.289.5480.739
-
Palczewski K, et al. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739-745. (Pubitemid 30650186)
-
(2000)
Science
, vol.289
, Issue.5480
, pp. 739-745
-
-
Palczewski, K.1
Kumasaka, T.2
Hori, T.3
Behnke, C.A.4
Motoshima, H.5
Fox, B.A.6
Le, T.I.7
Teller, D.C.8
Okada, T.9
Stenkamp, R.E.10
Yamamoto, M.11
Miyano, M.12
-
3
-
-
6344248639
-
Structure of bovine rhodopsin in a trigonal crystal form
-
DOI 10.1016/j.jmb.2004.08.090, PII S0022283604010903
-
Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409-1438. (Pubitemid 39387834)
-
(2004)
Journal of Molecular Biology
, vol.343
, Issue.5
, pp. 1409-1438
-
-
Li, J.1
Edwards, P.C.2
Burghammer, M.3
Villa, C.4
Schertler, G.F.X.5
-
4
-
-
34548529916
-
Crystal Structure of a Thermally Stable Rhodopsin Mutant
-
DOI 10.1016/j.jmb.2007.03.007, PII S0022283607003361
-
Standfuss J, et al. (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372:1179-1188. (Pubitemid 47381449)
-
(2007)
Journal of Molecular Biology
, vol.372
, Issue.5
, pp. 1179-1188
-
-
Standfuss, J.1
Xie, G.2
Edwards, P.C.3
Burghammer, M.4
Oprian, D.D.5
Schertler, G.F.X.6
-
5
-
-
33746321096
-
Crystallographic analysis of primary visual photochemistry
-
DOI 10.1002/anie.200600595
-
Nakamichi H, Okada T (2006) Crystallographic analysis of primary visual photochemistry. Angew Chem Int Ed Engl 45:4270-4273. (Pubitemid 44105630)
-
(2006)
Angewandte Chemie - International Edition
, vol.45
, Issue.26
, pp. 4270-4273
-
-
Nakamichi, H.1
Okada, T.2
-
7
-
-
47049130668
-
Crystal structure of the ligand-free G-protein-coupled receptor opsin
-
DOI 10.1038/nature07063, PII NATURE07063
-
Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183-187. (Pubitemid 351969893)
-
(2008)
Nature
, vol.454
, Issue.7201
, pp. 183-187
-
-
Park, J.H.1
Scheerer, P.2
Hofmann, K.P.3
Choe, H.-W.4
Ernst, O.P.5
-
8
-
-
52949102889
-
Crystal structure of opsin in its G-protein-interacting conformation
-
Scheerer P, et al. (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497-502.
-
(2008)
Nature
, vol.455
, pp. 497-502
-
-
Scheerer, P.1
-
9
-
-
79953242234
-
The structural basis of agonist-induced activation in constitutively active rhodopsin
-
Standfuss J, et al. (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656-660.
-
(2011)
Nature
, vol.471
, pp. 656-660
-
-
Standfuss, J.1
-
10
-
-
0024362631
-
Effect of carboxylic acid side chains on the absorption maximum of visual pigments
-
Zhukovsky EA, Oprian DD (1989) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246:928-930. (Pubitemid 20010506)
-
(1989)
Science
, vol.246
, Issue.4932
, pp. 928-930
-
-
Zhukovsky, E.A.1
Oprian, D.D.2
-
11
-
-
79953234218
-
Crystal structure of metarhodopsin II
-
Choe HW, et al. (2011) Crystal structure of metarhodopsin II. Nature 471:651-655.
-
(2011)
Nature
, vol.471
, pp. 651-655
-
-
Choe, H.W.1
-
12
-
-
33847081648
-
Pharmacogenomic and structural analysis of constitutive G protein-coupled receptor activity
-
Smit MJ, et al. (2007) Pharmacogenomic and structural analysis of constitutive G protein-coupled receptor activity. Annu Rev Pharmacol Toxicol 47:53-87.
-
(2007)
Annu Rev Pharmacol Toxicol
, vol.47
, pp. 53-87
-
-
Smit, M.J.1
-
13
-
-
0028125886
-
Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness
-
DOI 10.1038/367639a0
-
Rao VR, Cohen GB, Oprian DD (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367:639-642. (Pubitemid 24067704)
-
(1994)
Nature
, vol.367
, Issue.6464
, pp. 639-642
-
-
Rao, V.R.1
Cohen, G.B.2
Oprian, D.D.3
-
15
-
-
44649152217
-
Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin
-
Standfuss J, Zaitseva E, Mahalingam M, Vogel R (2008) Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin. J Mol Biol 380:145-157.
-
(2008)
J Mol Biol
, vol.380
, pp. 145-157
-
-
Standfuss, J.1
Zaitseva, E.2
Mahalingam, M.3
Vogel, R.4
-
16
-
-
0037465339
-
An opsin mutant with increased thermal stability
-
DOI 10.1021/bi020611z
-
Xie G, Gross AK, Oprian DD (2003) An opsin mutant with increased thermal stability. Biochemistry 42:1995-2001. (Pubitemid 36258672)
-
(2003)
Biochemistry
, vol.42
, Issue.7
, pp. 1995-2001
-
-
Xie, G.1
Gross, A.K.2
Oprian, D.D.3
-
17
-
-
0034100304
-
Assays for activation of recombinant expressed opsins by all-trans- retinals
-
Han M, Sakmar TP (2000) Assays for activation of recombinant expressed opsins by all- trans-retinals. Methods Enzymol 315:251-267. (Pubitemid 30123296)
-
(2000)
Methods in Enzymology
, vol.315
, pp. 251-267
-
-
Han, M.1
Sakmar, T.P.2
-
18
-
-
0023716027
-
Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit
-
Hamm HE, et al. (1988) Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science 241:832-835.
-
(1988)
Science
, vol.241
, pp. 832-835
-
-
Hamm, H.E.1
-
19
-
-
0030043913
-
Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library
-
DOI 10.1074/jbc.271.1.361
-
Martin EL, Rens-Domiano S, Schatz PJ, Hamm HE (1996) Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J Biol Chem 271:361-366. (Pubitemid 26026603)
-
(1996)
Journal of Biological Chemistry
, vol.271
, Issue.1
, pp. 361-366
-
-
Martin, E.L.1
Rens-Domiano, S.2
Schatz, P.J.3
Hamm, H.E.4
-
20
-
-
0037109074
-
Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line
-
DOI 10.1073/pnas.212519299
-
Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N- acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 99:13419-13424. (Pubitemid 35215396)
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.21
, pp. 13419-13424
-
-
Reeves, P.J.1
Callewaert, N.2
Contreras, R.3
Khorana, H.G.4
-
21
-
-
84887212404
-
A ligand channel through the G protein coupled receptor opsin
-
Hildebrand PW, et al. (2009) A ligand channel through the G protein coupled receptor opsin. PLoS One 4:e4382.
-
(2009)
PLoS One
, vol.4
-
-
Hildebrand, P.W.1
-
22
-
-
0344406765
-
5,6F motif in the rhodopsin ground state and during activation
-
DOI 10.1073/pnas.0435715100
-
Fritze O, et al. (2003) Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci USA 100:2290-2295. (Pubitemid 36297492)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.5
, pp. 2290-2295
-
-
Fritze, O.1
Filipek, S..2
Kuksa, V.3
Palczewski, K.4
Hofmann, K.P.5
Ernst, O.P.6
-
23
-
-
45649083187
-
Functional role of the "ionic lock" - An interhelical hydrogen-bond network in family A heptahelical receptors
-
Vogel R, et al. (2008) Functional role of the "ionic lock" - An interhelical hydrogen-bond network in family A heptahelical receptors. J Mol Biol 380:648-655.
-
(2008)
J Mol Biol
, vol.380
, pp. 648-655
-
-
Vogel, R.1
-
24
-
-
78650526380
-
Highly conserved tyrosine stabilizes the active state of rhodopsin
-
Goncalves JA, et al. (2010) Highly conserved tyrosine stabilizes the active state of rhodopsin. Proc Natl Acad Sci USA 107:19861-19866.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 19861-19866
-
-
Goncalves, J.A.1
-
25
-
-
33845933169
-
The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist
-
DOI 10.1021/bi061970n
-
Mahalingam M, Vogel R (2006) The all- trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist. Biochemistry 45:15624-15632. (Pubitemid 46032484)
-
(2006)
Biochemistry
, vol.45
, Issue.51
, pp. 15624-15632
-
-
Mahalingam, M.1
Vogel, R.2
-
26
-
-
65649142570
-
Location of the retinal chromophore in the activated state of rhodopsin*
-
Ahuja S, et al. (2009) Location of the retinal chromophore in the activated state of rhodopsin*. J Biol Chem 284:10190-10201.
-
(2009)
J Biol Chem
, vol.284
, pp. 10190-10201
-
-
Ahuja, S.1
-
27
-
-
0344823697
-
Conformational Similarities in the beta-Ionone Ring Region of the Rhodopsin Chromophore in Its Ground State and after Photoactivation to the Metarhodopsin-I Intermediate
-
DOI 10.1021/bi0354029
-
Spooner PJ, et al. (2003) Conformational similarities in the beta-ionone ring region of the rhodopsin chromophore in its ground state and after photoactivation to the metarhodopsin-I intermediate. Biochemistry 42:13371-13378. (Pubitemid 37444885)
-
(2003)
Biochemistry
, vol.42
, Issue.46
, pp. 13371-13378
-
-
Spooner, P.J.R.1
Sharples, J.M.2
Goodall, S.C.3
Seedorf, H.4
Verhoeven, M.A.5
Lugtenburg, J.6
Bovee-Geurts, P.H.M.7
DeGrip, W.J.8
Watts, A.9
-
28
-
-
59649112109
-
Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation
-
Ahuja S, et al. (2009) Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 16:168-175.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 168-175
-
-
Ahuja, S.1
-
29
-
-
78651411166
-
Structure of a nanobody-stabilized active state of the beta (2) adrenoceptor
-
Rasmussen SG, et al. (2011) Structure of a nanobody-stabilized active state of the beta (2) adrenoceptor. Nature 469:175-180.
-
(2011)
Nature
, vol.469
, pp. 175-180
-
-
Rasmussen, S.G.1
-
30
-
-
80051658642
-
Crystal structure of the beta(2) adrenergic receptor-Gs protein complex
-
Rasmussen SG, et al. (2011) Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 477:549-555.
-
(2011)
Nature
, vol.477
, pp. 549-555
-
-
Rasmussen, S.G.1
-
31
-
-
0027050784
-
296
-
DOI 10.1021/bi00165a008
-
Cohen GB, Oprian DD, Robinson PR (1992) Mechanism of activation and inactivation of opsin: Role of Glu113 and Lys296. Biochemistry 31:12592-12601. (Pubitemid 23016525)
-
(1992)
Biochemistry
, vol.31
, Issue.50
, pp. 12592-12601
-
-
Cohen, G.B.1
Oprian, D.D.2
Robinson, P.R.3
-
32
-
-
67249125561
-
The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex
-
Yao XJ, et al. (2009) The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc Natl Acad Sci USA 106:9501-9506.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 9501-9506
-
-
Yao, X.J.1
-
33
-
-
44949236117
-
High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation
-
DOI 10.1073/pnas.0802515105
-
Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci USA 105:7439-7444. (Pubitemid 351830036)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.21
, pp. 7439-7444
-
-
Altenbach, C.1
Kusnetzow, A.K.2
Ernst, O.P.3
Hofmann, K.P.4
Hubbell, W.L.5
-
34
-
-
0029907599
-
Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin
-
DOI 10.1126/science.274.5288.768
-
Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768-770. (Pubitemid 26398253)
-
(1996)
Science
, vol.274
, Issue.5288
, pp. 768-770
-
-
Farrens, D.L.1
Altenbach, C.2
Yang, K.3
Hubbell, W.L.4
Khorana, H.G.5
-
35
-
-
79956124396
-
Thermostabilisation of an agonist-bound conformation of the human adenosine A(2A) receptor
-
Lebon G, Bennett K, Jazayeri A, Tate CG (2011) Thermostabilisation of an agonist-bound conformation of the human adenosine A(2A) receptor. J Mol Biol 409:298-310.
-
(2011)
J Mol Biol
, vol.409
, pp. 298-310
-
-
Lebon, G.1
Bennett, K.2
Jazayeri, A.3
Tate, C.G.4
-
36
-
-
0037192858
-
Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6
-
DOI 10.1074/jbc.M111675200
-
Shapiro DA, Kristiansen K, Weiner DM, Kroeze WK, Roth BL (2002) Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6. J Biol Chem 277:11441-11449. (Pubitemid 34952912)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.13
, pp. 11441-11449
-
-
Shapiro, D.A.1
Kristiansen, K.2
Weiner, D.M.3
Kroeze, W.K.4
Roth, B.L.5
-
37
-
-
37349033724
-
1 receptor suggest a conserved hydrophobic asparagine-cage that constrains the activation of class A G protein-coupled receptors
-
DOI 10.1124/mol.107.038547
-
Bakker RA, et al. (2008) Constitutively active mutants of the histamine H1 receptor suggest a conserved hydrophobic asparagine-cage that constrains the activation of class A G protein-coupled receptors. Mol Pharmacol 73:94-103. (Pubitemid 350294200)
-
(2008)
Molecular Pharmacology
, vol.73
, Issue.1
, pp. 94-103
-
-
Bakker, R.A.1
Jongejan, A.2
Sansuk, K.3
Hacksell, U.4
Timmerman, H.5
Brann, M.R.6
Weiner, D.M.7
Pardo, L.8
Leurs, R.9
-
39
-
-
80052082999
-
Structural insights into agonist-induced activation of G-protein-coupled receptors
-
Deupi X, Standfuss J (2011) Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol 21:541-551.
-
(2011)
Curr Opin Struct Biol
, vol.21
, pp. 541-551
-
-
Deupi, X.1
Standfuss, J.2
-
40
-
-
4344674667
-
Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge
-
Kim JM, et al. (2004) Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge. Proc Natl Acad Sci USA 101:12508-12513.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 12508-12513
-
-
Kim, J.M.1
-
41
-
-
77958039571
-
Energy landscapes as a tool to integrate GPCR structure, dynamics, and function
-
Deupi X, Kobilka BK (2010) Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology (Bethesda) 25:293-303.
-
(2010)
Physiology (Bethesda)
, vol.25
, pp. 293-303
-
-
Deupi, X.1
Kobilka, B.K.2
-
42
-
-
0025757195
-
Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore
-
Zhukovsky EA, Robinson PR, Oprian DD (1991) Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore. Science 251:558-560. (Pubitemid 21926157)
-
(1991)
Science
, vol.251
, Issue.4993
, pp. 558-560
-
-
Zhukovsky, E.A.1
Robinson, P.R.2
Oprian, D.D.3
-
43
-
-
77950896264
-
Covalent bond between ligand and receptor required for efficient activation in rhodopsin
-
Matsuyama T, Yamashita T, Imai H, Shichida Y Covalent bond between ligand and receptor required for efficient activation in rhodopsin. J Biol Chem 285:8114-8121.
-
J Biol Chem
, vol.285
, pp. 8114-8121
-
-
Matsuyama, T.1
Yamashita, T.2
Imai, H.3
Shichida, Y.4
|