-
1
-
-
84954484374
-
Regulated necrosis: disease relevance and therapeutic opportunities
-
1 Conrad, M., et al. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15 (2016), 348–366.
-
(2016)
Nat. Rev. Drug Discov.
, vol.15
, pp. 348-366
-
-
Conrad, M.1
-
2
-
-
84963814113
-
An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model
-
2 Jennis, M., et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 30 (2016), 918–930.
-
(2016)
Genes Dev.
, vol.30
, pp. 918-930
-
-
Jennis, M.1
-
3
-
-
84926387317
-
Ferroptosis as a p53-mediated activity during tumour suppression
-
3 Jiang, L., et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520 (2015), 57–62.
-
(2015)
Nature
, vol.520
, pp. 57-62
-
-
Jiang, L.1
-
4
-
-
84928238774
-
T cell lipid peroxidation induces ferroptosis and prevents immunity to infection
-
4 Matsushita, M., et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212 (2015), 555–568.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 555-568
-
-
Matsushita, M.1
-
5
-
-
84978481313
-
Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC
-
5 Do Van, B., et al. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiol. Dis. 94 (2016), 169–178.
-
(2016)
Neurobiol. Dis.
, vol.94
, pp. 169-178
-
-
Do Van, B.1
-
6
-
-
84925286831
-
Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
-
6 Friedmann Angeli, J.P., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16 (2014), 1180–1191.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1180-1191
-
-
Friedmann Angeli, J.P.1
-
7
-
-
84861541814
-
Ferroptosis: an iron-dependent form of nonapoptotic cell death
-
7 Dixon, S.J., et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149 (2012), 1060–1072.
-
(2012)
Cell
, vol.149
, pp. 1060-1072
-
-
Dixon, S.J.1
-
8
-
-
84995452435
-
Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
-
8 Kagan, V.E., et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13 (2017), 81–90.
-
(2017)
Nat. Chem. Biol.
, vol.13
, pp. 81-90
-
-
Kagan, V.E.1
-
9
-
-
27744433524
-
Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors
-
9 Kagan, V.E., et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1 (2005), 223–232.
-
(2005)
Nat. Chem. Biol.
, vol.1
, pp. 223-232
-
-
Kagan, V.E.1
-
10
-
-
84892685001
-
Regulation of ferroptotic cancer cell death by GPX4
-
10 Yang, W.S., et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156 (2014), 317–331.
-
(2014)
Cell
, vol.156
, pp. 317-331
-
-
Yang, W.S.1
-
11
-
-
0037441379
-
The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults
-
11 Yant, L.J., et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34 (2003), 496–502.
-
(2003)
Free Radic. Biol. Med.
, vol.34
, pp. 496-502
-
-
Yant, L.J.1
-
12
-
-
50049133588
-
Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death
-
12 Seiler, A., et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8 (2008), 237–248.
-
(2008)
Cell Metab.
, vol.8
, pp. 237-248
-
-
Seiler, A.1
-
13
-
-
77952294953
-
Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration
-
13 Wirth, E.K., et al. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J. 24 (2010), 844–852.
-
(2010)
FASEB J.
, vol.24
, pp. 844-852
-
-
Wirth, E.K.1
-
14
-
-
84899654597
-
Cerebellar hypoplasia in mice lacking selenoprotein biosynthesis in neurons
-
14 Wirth, E.K., et al. Cerebellar hypoplasia in mice lacking selenoprotein biosynthesis in neurons. Biol. Trace Elem. Res. 158 (2014), 203–210.
-
(2014)
Biol. Trace Elem. Res.
, vol.158
, pp. 203-210
-
-
Wirth, E.K.1
-
15
-
-
84947786974
-
Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis
-
15 Chen, L., et al. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J. Biol. Chem. 290 (2015), 28097–28106.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 28097-28106
-
-
Chen, L.1
-
16
-
-
84857706955
-
Glutathione peroxidase 4 is required for maturation of photoreceptor cells
-
16 Ueta, T., et al. Glutathione peroxidase 4 is required for maturation of photoreceptor cells. J. Biol. Chem. 287 (2012), 7675–7682.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 7675-7682
-
-
Ueta, T.1
-
17
-
-
84973334339
-
Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration
-
17 Carlson, B.A., et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9 (2016), 22–31.
-
(2016)
Redox Biol.
, vol.9
, pp. 22-31
-
-
Carlson, B.A.1
-
18
-
-
84881670256
-
Combined deficiency in glutathione peroxidase 4 and vitamin E causes multiorgan thrombus formation and early death in mice
-
18 Wortmann, M., et al. Combined deficiency in glutathione peroxidase 4 and vitamin E causes multiorgan thrombus formation and early death in mice. Circ. Res. 113 (2013), 408–417.
-
(2013)
Circ. Res.
, vol.113
, pp. 408-417
-
-
Wortmann, M.1
-
19
-
-
84913582286
-
Synchronized renal tubular cell death involves ferroptosis
-
19 Linkermann, A., et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 16836–16841.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 16836-16841
-
-
Linkermann, A.1
-
20
-
-
84992371691
-
Glutathione peroxidase 4: a new player in neurodegeneration?
-
20 Cardoso, B.R., et al. Glutathione peroxidase 4: a new player in neurodegeneration?. Mol. Psychiatry 22 (2017), 328–335.
-
(2017)
Mol. Psychiatry
, vol.22
, pp. 328-335
-
-
Cardoso, B.R.1
-
21
-
-
84922479473
-
Polyunsaturated fatty acids and their metabolites in brain function and disease
-
21 Bazinet, R.P., Laye, S., Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15 (2014), 771–785.
-
(2014)
Nat. Rev. Neurosci.
, vol.15
, pp. 771-785
-
-
Bazinet, R.P.1
Laye, S.2
-
22
-
-
84923926629
-
The 12/15-lipoxygenase as an emerging therapeutic target for Alzheimer's disease
-
22 Joshi, Y.B., et al. The 12/15-lipoxygenase as an emerging therapeutic target for Alzheimer's disease. Trends Pharmacol. Sci. 36 (2015), 181–186.
-
(2015)
Trends Pharmacol. Sci.
, vol.36
, pp. 181-186
-
-
Joshi, Y.B.1
-
23
-
-
84959254675
-
Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in parkinson's disease
-
23 Deas, E., et al. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in parkinson's disease. Antioxid. Redox Signal. 24 (2016), 376–391.
-
(2016)
Antioxid. Redox Signal.
, vol.24
, pp. 376-391
-
-
Deas, E.1
-
24
-
-
85017618880
-
Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia
-
24 Abeti, R., et al. Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia. Cell Death Dis., 7, 2016, e2237.
-
(2016)
Cell Death Dis.
, vol.7
, pp. e2237
-
-
Abeti, R.1
-
25
-
-
84899745176
-
Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington's disease
-
25 Paul, B.D., et al. Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington's disease. Nature 509 (2014), 96–100.
-
(2014)
Nature
, vol.509
, pp. 96-100
-
-
Paul, B.D.1
-
26
-
-
84897059782
-
Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models
-
26 Skouta, R., et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136 (2014), 4551–4556.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 4551-4556
-
-
Skouta, R.1
-
27
-
-
84885020652
-
Glutathione peroxidase activity is neuroprotective in models of Huntington's disease
-
27 Mason, R.P., et al. Glutathione peroxidase activity is neuroprotective in models of Huntington's disease. Nat. Genet. 45 (2013), 1249–1254.
-
(2013)
Nat. Genet.
, vol.45
, pp. 1249-1254
-
-
Mason, R.P.1
-
28
-
-
0030867994
-
A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion
-
28 Li, Y., et al. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19 (1997), 453–463.
-
(1997)
Neuron
, vol.19
, pp. 453-463
-
-
Li, Y.1
-
29
-
-
84983666736
-
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
-
29 Yang, W.S., et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E4966–E4975.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E4966-E4975
-
-
Yang, W.S.1
-
30
-
-
84922569751
-
Mammalian lipoxygenases and their biological relevance
-
30 Kuhn, H., et al. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 1851 (2015), 308–330.
-
(2015)
Biochim. Biophys. Acta
, vol.1851
, pp. 308-330
-
-
Kuhn, H.1
-
31
-
-
80054052917
-
Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease
-
31 Haeggstrom, J.Z., Funk, C.D., Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem. Rev. 111 (2011), 5866–5898.
-
(2011)
Chem. Rev.
, vol.111
, pp. 5866-5898
-
-
Haeggstrom, J.Z.1
Funk, C.D.2
-
32
-
-
34248596797
-
Control of oxygenation in lipoxygenase and cyclooxygenase catalysis
-
32 Schneider, C., et al. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem. Biol. 14 (2007), 473–488.
-
(2007)
Chem. Biol.
, vol.14
, pp. 473-488
-
-
Schneider, C.1
-
33
-
-
80054089650
-
Free radical lipid peroxidation: mechanisms and analysis
-
33 Yin, H., et al. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111 (2011), 5944–5972.
-
(2011)
Chem. Rev.
, vol.111
, pp. 5944-5972
-
-
Yin, H.1
-
34
-
-
78651453239
-
The structure of human 5-lipoxygenase
-
34 Gilbert, N.C., et al. The structure of human 5-lipoxygenase. Science 331 (2011), 217–219.
-
(2011)
Science
, vol.331
, pp. 217-219
-
-
Gilbert, N.C.1
-
35
-
-
84921357948
-
Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice
-
35 Brutsch, S.H., et al. Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice. Antioxid. Redox Signal. 22 (2015), 281–293.
-
(2015)
Antioxid. Redox Signal.
, vol.22
, pp. 281-293
-
-
Brutsch, S.H.1
-
36
-
-
84994212708
-
Male subfertility induced by heterozygous expression of catalytically inactive glutathione peroxidase 4 is rescued in vivo by systemic inactivation of the Alox15 gene
-
36 Brutsch, S.H., et al. Male subfertility induced by heterozygous expression of catalytically inactive glutathione peroxidase 4 is rescued in vivo by systemic inactivation of the Alox15 gene. J. Biol. Chem. 291 (2016), 23578–23588.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 23578-23588
-
-
Brutsch, S.H.1
-
37
-
-
84913538763
-
Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective
-
37 Ingold, K.U., Pratt, D.A., Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem. Rev. 114 (2014), 9022–9046.
-
(2014)
Chem. Rev.
, vol.114
, pp. 9022-9046
-
-
Ingold, K.U.1
Pratt, D.A.2
-
38
-
-
0001491669
-
Inhibition of the autoxidation of organic substances in the liquid phase
-
38 Ingold, K.U., Inhibition of the autoxidation of organic substances in the liquid phase. Chem. Rev. 61 (1961), 563–589.
-
(1961)
Chem. Rev.
, vol.61
, pp. 563-589
-
-
Ingold, K.U.1
-
39
-
-
33845374568
-
Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function
-
39 Burton, G.W., Ingold, K.U., Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc. Chem. Res. 19 (1986), 194–201.
-
(1986)
Acc. Chem. Res.
, vol.19
, pp. 194-201
-
-
Burton, G.W.1
Ingold, K.U.2
-
40
-
-
84928622749
-
Vitamin E and neurodegeneration
-
40 Ulatowski, L.M., Manor, D., Vitamin E and neurodegeneration. Neurobiol. Dis. 84 (2015), 78–83.
-
(2015)
Neurobiol. Dis.
, vol.84
, pp. 78-83
-
-
Ulatowski, L.M.1
Manor, D.2
-
41
-
-
0019943050
-
Spinocerebellar degeneration secondary to chronic intestinal malabsorption: a vitamin E deficiency syndrome
-
41 Harding, A.E., et al. Spinocerebellar degeneration secondary to chronic intestinal malabsorption: a vitamin E deficiency syndrome. Ann. Neurol. 12 (1982), 419–424.
-
(1982)
Ann. Neurol.
, vol.12
, pp. 419-424
-
-
Harding, A.E.1
-
42
-
-
84928309878
-
Maximizing the reactivity of phenolic and aminic radical-trapping antioxidants: just add nitrogen!
-
42 Valgimigli, L., Pratt, D.A., Maximizing the reactivity of phenolic and aminic radical-trapping antioxidants: just add nitrogen!. Acc. Chem. Res. 48 (2015), 966–975.
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 966-975
-
-
Valgimigli, L.1
Pratt, D.A.2
-
43
-
-
0034810395
-
5-Pyrimidinols: novel chain-breaking antioxidants more effective than phenols
-
43 Pratt, D.A., et al. 5-Pyrimidinols: novel chain-breaking antioxidants more effective than phenols. J. Am. Chem. Soc. 123 (2001), 4625–4626.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 4625-4626
-
-
Pratt, D.A.1
-
44
-
-
0141645551
-
6-Amino-3-pyridinols: towards diffusion-controlled chain-breaking antioxidants
-
44 Wijtmans, M., et al. 6-Amino-3-pyridinols: towards diffusion-controlled chain-breaking antioxidants. Angew. Chem. Int. Ed. Engl. 42 (2003), 4370–4373.
-
(2003)
Angew. Chem. Int. Ed. Engl.
, vol.42
, pp. 4370-4373
-
-
Wijtmans, M.1
-
45
-
-
34548169304
-
Tetrahydro-1,8-naphthyridinol analogues of alpha-tocopherol as antioxidants in lipid membranes and low-density lipoproteins
-
45 Nam, T.G., et al. Tetrahydro-1,8-naphthyridinol analogues of alpha-tocopherol as antioxidants in lipid membranes and low-density lipoproteins. J. Am. Chem. Soc. 129 (2007), 10211–10219.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 10211-10219
-
-
Nam, T.G.1
-
46
-
-
85024369600
-
On the mechanism of cytoprotection by ferrostatin -1 and liproxstatin -1 and the role of lipid peroxidation in ferroptotic cell death
-
Published online March 7
-
46 Zilka, O., et al. On the mechanism of cytoprotection by ferrostatin -1 and liproxstatin -1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci., 2017, 10.1021/acscentsci.7b00028 Published online March 7.
-
(2017)
ACS Cent. Sci.
-
-
Zilka, O.1
-
47
-
-
84873819391
-
Besting vitamin E: sidechain substitution is key to the reactivity of naphthyridinol antioxidants in lipid bilayers
-
47 Li, B., et al. Besting vitamin E: sidechain substitution is key to the reactivity of naphthyridinol antioxidants in lipid bilayers. J. Am. Chem. Soc. 135 (2013), 1394–1405.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 1394-1405
-
-
Li, B.1
-
48
-
-
84966425170
-
Acid is key to the radical-trapping antioxidant activity of nitroxides
-
48 Haidasz, E.A., et al. Acid is key to the radical-trapping antioxidant activity of nitroxides. J. Am. Chem. Soc. 138 (2016), 5290–5298.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 5290-5298
-
-
Haidasz, E.A.1
-
49
-
-
85012284181
-
A Mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis
-
49 Krainz, T., et al. A Mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis. ACS Cent. Sci. 2 (2016), 653–659.
-
(2016)
ACS Cent. Sci.
, vol.2
, pp. 653-659
-
-
Krainz, T.1
-
50
-
-
33947434821
-
Reactive oxygen species, isotope effect, essential nutrients, and enhanced longevity
-
50 Shchepinov, M.S., Reactive oxygen species, isotope effect, essential nutrients, and enhanced longevity. Rejuvenation Res. 10 (2007), 47–59.
-
(2007)
Rejuvenation Res.
, vol.10
, pp. 47-59
-
-
Shchepinov, M.S.1
-
51
-
-
80053370892
-
Isotopic reinforcement of essential polyunsaturated fatty acids diminishes nigrostriatal degeneration in a mouse model of Parkinson's disease
-
51 Shchepinov, M.S., et al. Isotopic reinforcement of essential polyunsaturated fatty acids diminishes nigrostriatal degeneration in a mouse model of Parkinson's disease. Toxicol. Lett. 207 (2011), 97–103.
-
(2011)
Toxicol. Lett.
, vol.207
, pp. 97-103
-
-
Shchepinov, M.S.1
-
52
-
-
84883021878
-
Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids
-
52 Cotticelli, M.G., et al. Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids. Redox Biol. 1 (2013), 398–404.
-
(2013)
Redox Biol.
, vol.1
, pp. 398-404
-
-
Cotticelli, M.G.1
-
53
-
-
84995468814
-
ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
-
53 Doll, S., et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13 (2017), 91–98.
-
(2017)
Nat. Chem. Biol.
, vol.13
, pp. 91-98
-
-
Doll, S.1
-
54
-
-
84937119776
-
Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death
-
54 Dixon, S.J., et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10 (2015), 1604–1609.
-
(2015)
ACS Chem. Biol.
, vol.10
, pp. 1604-1609
-
-
Dixon, S.J.1
-
55
-
-
0035816590
-
Expression and characterization of recombinant rat acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones
-
55 Kim, J.H., et al. Expression and characterization of recombinant rat acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J. Biol. Chem. 276 (2001), 24667–24673.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 24667-24673
-
-
Kim, J.H.1
-
56
-
-
84937525519
-
Glutaminolysis and transferrin regulate ferroptosis
-
56 Gao, M., et al. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59 (2015), 298–308.
-
(2015)
Mol. Cell
, vol.59
, pp. 298-308
-
-
Gao, M.1
-
57
-
-
84976292806
-
Autophagy promotes ferroptosis by degradation of ferritin
-
57 Hou, W., et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12 (2016), 1425–1428.
-
(2016)
Autophagy
, vol.12
, pp. 1425-1428
-
-
Hou, W.1
-
58
-
-
84982123825
-
Ferroptosis is an autophagic cell death process
-
58 Gao, M., et al. Ferroptosis is an autophagic cell death process. Cell Res. 26 (2016), 1021–1032.
-
(2016)
Cell Res.
, vol.26
, pp. 1021-1032
-
-
Gao, M.1
-
59
-
-
84975132567
-
An essential role for functional lysosomes in ferroptosis of cancer cells
-
59 Torii, S., et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J. 473 (2016), 769–777.
-
(2016)
Biochem. J.
, vol.473
, pp. 769-777
-
-
Torii, S.1
-
60
-
-
37049201550
-
On the existence of a hitherto unrecognized dietary factor essential for reproduction
-
60 Evans, H.M., Bishop, K.S., On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56 (1922), 650–651.
-
(1922)
Science
, vol.56
, pp. 650-651
-
-
Evans, H.M.1
Bishop, K.S.2
-
61
-
-
0033037413
-
Vitamin E: function and metabolism
-
61 Brigelius-Flohe, R., Traber, M.G., Vitamin E: function and metabolism. FASEB J. 13 (1999), 1145–1155.
-
(1999)
FASEB J.
, vol.13
, pp. 1145-1155
-
-
Brigelius-Flohe, R.1
Traber, M.G.2
|