메뉴 건너뛰기




Volumn 29, Issue , 2016, Pages 186-273

Machine Learning in Materials Science: Recent Progress and Emerging Applications

Author keywords

Crystal structure predictions; Interatomic potentials; Machine learning; Materials science; Phase diagram determination; Supervised learning; Unsupervised learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; CRYSTAL STRUCTURE; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATERIALS SCIENCE; PHASE DIAGRAMS; SEARCH ENGINES; SUPERVISED LEARNING; UNSUPERVISED LEARNING;

EID: 85016437770     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781119148739.ch4     Document Type: Chapter
Times cited : (429)

References (181)
  • 1
    • 80051704975 scopus 로고    scopus 로고
    • Materials Informatics: An Emerging Technology for Materials Development
    • R. LeSar, Stat. Anal. Data Min., 1, 372 (2009). Materials Informatics: An Emerging Technology for Materials Development.
    • (2009) Stat. Anal. Data Min. , vol.1 , pp. 372
    • LeSar, R.1
  • 2
    • 25144449172 scopus 로고    scopus 로고
    • Materials Informatics
    • K. Rajan, Mater. Today, 8, 38 (2005). Materials Informatics.
    • (2005) Mater. Today , vol.8 , pp. 38
    • Rajan, K.1
  • 4
    • 77953628959 scopus 로고    scopus 로고
    • Finding Nature's Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
    • G. Hautier, C. C. Fischer, A. Jain, T. Mueller, and G. Ceder, Chem. Mater., 22, 3762 (2010). Finding Nature's Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory.
    • (2010) Chem. Mater. , vol.22 , pp. 3762
    • Hautier, G.1    Fischer, C.C.2    Jain, A.3    Mueller, T.4    Ceder, G.5
  • 5
    • 0242321314 scopus 로고    scopus 로고
    • Predicting Crystal Structures with Data Mining of Quantum Calculations
    • D. Morgan, S. Curtarolo, K. Persson, J. Rodgers, and G. Ceder, Phys. Rev. Lett., 91, 135503 (2003). Predicting Crystal Structures with Data Mining of Quantum Calculations.
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 135503
    • Morgan, D.1    Curtarolo, S.2    Persson, K.3    Rodgers, J.4    Ceder, G.5
  • 6
    • 85019426280 scopus 로고    scopus 로고
    • Accelerating Materials Property Predictions Using Machine Learning
    • G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, Sci. Rep., 3, 1 (2013). Accelerating Materials Property Predictions Using Machine Learning.
    • (2013) Sci. Rep. , vol.3 , pp. 1
    • Pilania, G.1    Wang, C.2    Jiang, X.3    Rajasekaran, S.4    Ramprasad, R.5
  • 9
    • 84937829970 scopus 로고    scopus 로고
    • Accelerated Materials Property Predictions and Design Using Motif-Based Fingerprints
    • T. D. Huan, A. Mannodi-Kanakkithodi, and R. Ramprasad, Phys. Rev. B, 92, 014106 (2015). Accelerated Materials Property Predictions and Design Using Motif-Based Fingerprints.
    • (2015) Phys. Rev. B , vol.92 , pp. 014106
    • Huan, T.D.1    Mannodi-Kanakkithodi, A.2    Ramprasad, R.3
  • 10
    • 84882446377 scopus 로고    scopus 로고
    • A Density-Functional Theory-Based Neural Network Potential for Water Clusters Including van der Waals Corrections
    • T. Morawietz and J. Behler, J. Phys. Chem. A, 117, 7356 (2013). A Density-Functional Theory-Based Neural Network Potential for Water Clusters Including van der Waals Corrections.
    • (2013) J. Phys. Chem. A , vol.117 , pp. 7356
    • Morawietz, T.1    Behler, J.2
  • 11
    • 80053512754 scopus 로고    scopus 로고
    • Neural Network Potential-Energy Surfaces in Chemistry: A Tool for Large-Scale Simulations
    • J. Behler, Phys. Chem. Chem. Phys., 13, 17930 (2011). Neural Network Potential-Energy Surfaces in Chemistry: A Tool for Large-Scale Simulations.
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 17930
    • Behler, J.1
  • 12
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, Without the Electrons
    • A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett., 104, 136403 (2010). Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, Without the Electrons.
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csányi, G.4
  • 13
    • 84943744240 scopus 로고    scopus 로고
    • Learning Scheme to Predict Atomic Forces and Accelerate Materials Simulations
    • V. Botu and R. Ramprasad, Phys. Rev. B, 92, 094306 (2015). Learning Scheme to Predict Atomic Forces and Accelerate Materials Simulations.
    • (2015) Phys. Rev. B , vol.92 , pp. 094306
    • Botu, V.1    Ramprasad, R.2
  • 14
    • 84936800621 scopus 로고    scopus 로고
    • Adaptive Machine Learning Framework to Accelerate Ab Initio Molecular Dynamics
    • V. Botu and R. Ramprasad, Int. J. Quantum Chem., 115, 1074 (2015). Adaptive Machine Learning Framework to Accelerate Ab Initio Molecular Dynamics.
    • (2015) Int. J. Quantum Chem. , vol.115 , pp. 1074
    • Botu, V.1    Ramprasad, R.2
  • 17
    • 70349789252 scopus 로고    scopus 로고
    • Neural Networks and Information in Materials Science
    • H. K. D. H. Bhadeshia, Stat. Anal. Data Min., 1, 296 (2009). Neural Networks and Information in Materials Science.
    • (2009) Stat. Anal. Data Min. , vol.1 , pp. 296
    • Bhadeshia, H.K.D.H.1
  • 18
    • 0001185873 scopus 로고
    • An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S
    • T. Bayes and R. Price, Philos. Trans. (1683-1775), 53, 370 (1763). An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.
    • (1763) Philos. Trans. (1683-1775) , vol.53 , pp. 370
    • Bayes, T.1    Price, R.2
  • 20
    • 0030327756 scopus 로고    scopus 로고
    • The Selection of Prior Distributions by Formal Rules
    • R. E. Kass and L. Wasserman, J. Am. Stat. Assoc., 91, 1343 (1996). The Selection of Prior Distributions by Formal Rules.
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 1343
    • Kass, R.E.1    Wasserman, L.2
  • 21
    • 11944266539 scopus 로고
    • Information Theory and Statistical Mechanics
    • E. T. Jaynes, Phys. Rev., 106, 620 (1957). Information Theory and Statistical Mechanics.
    • (1957) Phys. Rev. , vol.106 , pp. 620
    • Jaynes, E.T.1
  • 22
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • G. Schwarz, Ann. Stat., 6, 461 (1978). Estimating the Dimension of a Model.
    • (1978) Ann. Stat. , vol.6 , pp. 461
    • Schwarz, G.1
  • 23
    • 0016355478 scopus 로고
    • A New Look at the Statistical Model Identification
    • H. Akaike, IEEE Trans. Autom. Control, 19, 716 (1974). A New Look at the Statistical Model Identification.
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716
    • Akaike, H.1
  • 27
    • 84858276124 scopus 로고    scopus 로고
    • Results of the Active Learning Challenge
    • Workshop on Active Learning and Experimental Design
    • I. Guyon, G. Cawley, G. Dror, and V. Lemaire, Results of the Active Learning Challenge, in JMLR: Workshop and Conference Proceedings, 2011, vol 16, pp. 19-45. Workshop on Active Learning and Experimental Design.
    • (2011) JMLR: Workshop and Conference Proceedings , vol.16 , pp. 19-45
    • Guyon, I.1    Cawley, G.2    Dror, G.3    Lemaire, V.4
  • 33
    • 0001653224 scopus 로고
    • Locally Optimal Designs for Estimating Parameters
    • H. Chernoff, Ann. Math. Stat., 24, 586 (1953). Locally Optimal Designs for Estimating Parameters.
    • (1953) Ann. Math. Stat. , vol.24 , pp. 586
    • Chernoff, H.1
  • 34
    • 0013097818 scopus 로고
    • On the Efficient Design of Statistical Investigations
    • A. Wald, Ann. Math. Stat., 14, 134 (1943). On the Efficient Design of Statistical Investigations.
    • (1943) Ann. Math. Stat. , vol.14 , pp. 134
    • Wald, A.1
  • 35
    • 0000448225 scopus 로고
    • Optimum Designs in Regression Problems
    • J. Kiefer and J. Wolfowitz, Ann. Math. Stat., 30, 271 (1959). Optimum Designs in Regression Problems.
    • (1959) Ann. Math. Stat. , vol.30 , pp. 271
    • Kiefer, J.1    Wolfowitz, J.2
  • 36
    • 84892636657 scopus 로고    scopus 로고
    • Relationships Among Several Optimality Criteria
    • E. A. Rady, M. M. E. Abd El-Monsef, and M. M. Seyam, InterStat, 247, 1 (2009). Relationships Among Several Optimality Criteria.
    • (2009) InterStat , vol.247 , pp. 1
    • Rady, E.A.1    Abd El-Monsef, M.M.E.2    Seyam, M.M.3
  • 37
    • 84972528615 scopus 로고
    • Bayesian Experimental Design:A Review
    • K. Chaloner and I. Verdinelli, Stat. Sci., 10, 273 (1995). Bayesian Experimental Design:A Review.
    • (1995) Stat. Sci. , vol.10 , pp. 273
    • Chaloner, K.1    Verdinelli, I.2
  • 38
    • 0042360187 scopus 로고    scopus 로고
    • S. Ghosh and C. R. Rao, Editors, Elsevier, Amsterdam, Review of Optimal Bayes Designs
    • A. DasGupta, in Handbook of Statistics, S. Ghosh and C. R. Rao, Editors, Elsevier, Amsterdam, 1996, pp. 1099-1147. Review of Optimal Bayes Designs.
    • (1996) Handbook of Statistics , pp. 1099-1147
    • DasGupta, A.1
  • 39
    • 84982366524 scopus 로고
    • A Research Test of the Rorschach Test
    • A. K. Kurtz, Pers. Psychol., 1, 41 (1948). A Research Test of the Rorschach Test.
    • (1948) Pers. Psychol. , vol.1 , pp. 41
    • Kurtz, A.K.1
  • 40
    • 84964114702 scopus 로고
    • The Need and Means of Cross Validation. I. Problems and Designs of Cross-Validation
    • C. I. Mosier, Educ. Psychol. Meas., 11, 5 (1951). The Need and Means of Cross Validation. I. Problems and Designs of Cross-Validation.
    • (1951) Educ. Psychol. Meas. , vol.11 , pp. 5
    • Mosier, C.I.1
  • 41
    • 84950645271 scopus 로고
    • The Predictive Sample Reuse Method with Applications
    • S. Geisser, J. Am. Stat. Assoc., 70, 320 (1975). The Predictive Sample Reuse Method with Applications.
    • (1975) J. Am. Stat. Assoc. , vol.70 , pp. 320
    • Geisser, S.1
  • 42
    • 0000629975 scopus 로고
    • Cross-Validatory Choice and Assessment of Statistical Predictions
    • M. Stone, J. R. Stat. Soc. Ser. B Methodol., 36, 111 (1974). Cross-Validatory Choice and Assessment of Statistical Predictions.
    • (1974) J. R. Stat. Soc. Ser. B Methodol. , vol.36 , pp. 111
    • Stone, M.1
  • 43
    • 0002344794 scopus 로고
    • Bootstrap Methods: Another Look at the Jackknife
    • B. Efron, Ann. Stat., 7, 1 (1979). Bootstrap Methods: Another Look at the Jackknife.
    • (1979) Ann. Stat. , vol.7 , pp. 1
    • Efron, B.1
  • 44
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on Cross-Validation: The .632+ Bootstrap Method
    • B. Efron and R. Tibshirani, J. Am. Stat. Assoc., 92, 548 (1997). Improvements on Cross-Validation: The .632+ Bootstrap Method.
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 548
    • Efron, B.1    Tibshirani, R.2
  • 45
    • 4944239996 scopus 로고    scopus 로고
    • The Estimation of Prediction Error:Covariance Penalties and Cross-Validation [With comments by P. Burman, L. Denby, J. M. Landwehr, C. L. Mallows, X. Shen, H.-C. Huang, J. Ye, and C. Zhang]
    • B. Efron, J. Am. Stat. Assoc., 99, 619-642 (2004). The Estimation of Prediction Error:Covariance Penalties and Cross-Validation [With comments by P. Burman, L. Denby, J. M. Landwehr, C. L. Mallows, X. Shen, H.-C. Huang, J. Ye, and C. Zhang].
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 619-642
    • Efron, B.1
  • 46
    • 85164392958 scopus 로고
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
    • R. Kohavi, in IJCAI'95 Proceedings of the 14th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1995, vol 2, pp. 1137-1143. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.
    • (1995) IJCAI'95 Proceedings of the 14th International Joint Conference on Artificial Intelligence , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 47
    • 0000131403 scopus 로고    scopus 로고
    • Cross-Validation Methods
    • M. W. Browne, J. Math. Psychol., 44, 108 (2000). Cross-Validation Methods.
    • (2000) J. Math. Psychol. , vol.44 , pp. 108
    • Browne, M.W.1
  • 48
    • 77956649096 scopus 로고    scopus 로고
    • A Survey of Cross-Validation Procedures for Model Selection
    • S. Arlot and A. Celisse, Stat. Surv., 4, 40 (2010). A Survey of Cross-Validation Procedures for Model Selection.
    • (2010) Stat. Surv. , vol.4 , pp. 40
    • Arlot, S.1    Celisse, A.2
  • 49
    • 84945737762 scopus 로고
    • A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation
    • B. Efron and G. Gong, Am. Stat., 37, 36 (1983). A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation.
    • (1983) Am. Stat. , vol.37 , pp. 36
    • Efron, B.1    Gong, G.2
  • 50
    • 77955381133 scopus 로고    scopus 로고
    • Measuring the Prediction Error. A Comparison of Cross-Validation, Bootstrap and Covariance Penalty Methods
    • S. Borra and A. Di Ciaccio, Comput. Stat. Data Anal., 54, 2976 (2010). Measuring the Prediction Error. A Comparison of Cross-Validation, Bootstrap and Covariance Penalty Methods.
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 2976
    • Borra, S.1    Di Ciaccio, A.2
  • 51
    • 84942484786 scopus 로고
    • Ridge Regression: Biased Estimation for Nonorthogonal Problems
    • A. E. Hoerl and R. W. Kennard, Technometrics, 12, 55 (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems.
    • (1970) Technometrics , vol.12 , pp. 55
    • Hoerl, A.E.1    Kennard, R.W.2
  • 52
    • 85194972808 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • R. Tibshirani, J. R. Stat. Soc. Ser. B Methodol., 58, 267 (1996). Regression Shrinkage and Selection via the Lasso.
    • (1996) J. R. Stat. Soc. Ser. B Methodol. , vol.58 , pp. 267
    • Tibshirani, R.1
  • 54
    • 84969334819 scopus 로고    scopus 로고
    • The Split Bregman Method for L1-Regularized Problems
    • T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2, 323 (2009). The Split Bregman Method for L1-Regularized Problems.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 323
    • Goldstein, T.1    Osher, S.2
  • 55
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • C. Cortes and V. Vapnik, Mach. Learn., 20, 273 (1995). Support-Vector Networks.
    • (1995) Mach. Learn. , vol.20 , pp. 273
    • Cortes, C.1    Vapnik, V.2
  • 56
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • C. J. C. Burges, Data Min. Knowl. Disc., 2, 121 (1998). A Tutorial on Support Vector Machines for Pattern Recognition.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 121
    • Burges, C.J.C.1
  • 57
    • 76749142536 scopus 로고    scopus 로고
    • Support Vector Machines for Classification and Regression
    • R. G. Brereton and G. R. Lloyd, Analyst, 135, 230 (2010). Support Vector Machines for Classification and Regression.
    • (2010) Analyst , vol.135 , pp. 230
    • Brereton, R.G.1    Lloyd, G.R.2
  • 58
    • 0001136320 scopus 로고
    • The Simplex Method for Quadratic Programming
    • P. Wolfe, Econometrica, 27, 382 (1959). The Simplex Method for Quadratic Programming.
    • (1959) Econometrica , vol.27 , pp. 382
    • Wolfe, P.1
  • 59
    • 0001971618 scopus 로고
    • An Algorithm for Quadratic Programming
    • M. Frank and P. Wolfe, Nav. Res. Logist. Q., 3, 95 (1956). An Algorithm for Quadratic Programming.
    • (1956) Nav. Res. Logist. Q. , vol.3 , pp. 95
    • Frank, M.1    Wolfe, P.2
  • 60
    • 0032638628 scopus 로고    scopus 로고
    • Least Squares Support Vector Machine Classifiers
    • J. A. K. Suykens and J. Vandewalle, Neural Process. Lett., 9, 293 (1999). Least Squares Support Vector Machine Classifiers.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 61
    • 0000874557 scopus 로고
    • Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning
    • M. Aizerman, E. Braverman, and L. Rozoner, Autom. Remote Control, 25, 821 (1964). Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning.
    • (1964) Autom. Remote Control , vol.25 , pp. 821
    • Aizerman, M.1    Braverman, E.2    Rozoner, L.3
  • 62
    • 0001500115 scopus 로고
    • Functions of Positive and Negative Type, and Their Connection with the Theory of Integral Equations
    • J. Mercer, Philos. Trans. R. S. Lond. A, 209, 415 (1909). Functions of Positive and Negative Type, and Their Connection with the Theory of Integral Equations.
    • (1909) Philos. Trans. R. S. Lond. A , vol.209 , pp. 415
    • Mercer, J.1
  • 63
    • 5844297152 scopus 로고
    • Theory of Reproducing Kernels
    • N. Aronszajn, Trans. Am. Math. Soc., 68, 337 (1950). Theory of Reproducing Kernels.
    • (1950) Trans. Am. Math. Soc. , vol.68 , pp. 337
    • Aronszajn, N.1
  • 65
    • 0000406385 scopus 로고
    • A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines
    • G. S. Kimeldore and G. Wahba, Ann. Math. Stat., 41, 495 (1970). A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines.
    • (1970) Ann. Math. Stat. , vol.41 , pp. 495
    • Kimeldore, G.S.1    Wahba, G.2
  • 67
    • 51249194645 scopus 로고
    • A Logical Calculus of the Ideas Immanent in Nervous Activity
    • W. S. McCulloch and W. Pitts, Bull. Math. Biophys., 5, 115 (1943). A Logical Calculus of the Ideas Immanent in Nervous Activity.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115
    • McCulloch, W.S.1    Pitts, W.2
  • 68
    • 11144273669 scopus 로고
    • The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain
    • F. Rosenblatt, Psychol. Rev., 65, 386 (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.
    • (1958) Psychol. Rev. , vol.65 , pp. 386
    • Rosenblatt, F.1
  • 70
    • 0024866495 scopus 로고
    • On the Approximate Realization of Continuous Mappings by Neural Networks
    • K.-I. Funahashi, Neural Netw., 2, 183 (1989). On the Approximate Realization of Continuous Mappings by Neural Networks.
    • (1989) Neural Netw. , vol.2 , pp. 183
    • Funahashi, K.-I.1
  • 71
    • 0026254768 scopus 로고
    • A General Regression Neural Network
    • D. F. Specht, IEEE Trans. Neural Netw., 2, 568 (1991). A General Regression Neural Network.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 568
    • Specht, D.F.1
  • 72
    • 0025488663 scopus 로고
    • 30 Years of Adaptive Neural Networks: Perceptron, Madaline, and Backpropagation
    • B. Widrow and M. A. Lehr, Proc. IEEE, 78, 1415 (1990). 30 Years of Adaptive Neural Networks: Perceptron, Madaline, and Backpropagation.
    • (1990) Proc. IEEE , vol.78 , pp. 1415
    • Widrow, B.1    Lehr, M.A.2
  • 75
    • 0002431740 scopus 로고    scopus 로고
    • Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey
    • S. K. Murthy, Data Min. Knowl. Disc., 2, 345 (1998). Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 345
    • Murthy, S.K.1
  • 80
    • 0001815269 scopus 로고
    • Constructing Optimal Binary Decision Trees Is NP-Complete
    • L. Hyafil and R. L. Rivest, Inf. Process. Lett., 5, 15 (1976). Constructing Optimal Binary Decision Trees Is NP-Complete.
    • (1976) Inf. Process. Lett. , vol.5 , pp. 15
    • Hyafil, L.1    Rivest, R.L.2
  • 81
    • 33744584654 scopus 로고
    • Induction of Decision Trees
    • J. Ross Quinlan, Mach. Learn., 1, 81 (1986). Induction of Decision Trees.
    • (1986) Mach. Learn. , vol.1 , pp. 81
    • Ross Quinlan, J.1
  • 84
    • 79952785777 scopus 로고
    • An Empirical Comparison of Pruning Methods for Decision Tree Induction
    • J. Mingers, Mach. Learn., 4, 227 (1989). An Empirical Comparison of Pruning Methods for Decision Tree Induction.
    • (1989) Mach. Learn. , vol.4 , pp. 227
    • Mingers, J.1
  • 85
  • 86
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L. Breiman, Mach. Learn., 45, 5 (2001). Random Forests.
    • (2001) Mach. Learn. , vol.45 , pp. 5
    • Breiman, L.1
  • 87
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble Based Systems in Decision Making
    • R. Polikar, IEEE Circuits Syst. Mag., 6, 21 (2006). Ensemble Based Systems in Decision Making.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , pp. 21
    • Polikar, R.1
  • 88
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-Based Classifiers
    • L. Rokach, Artif. Intell. Rev., 33, 1 (2010). Ensemble-Based Classifiers.
    • (2010) Artif. Intell. Rev. , vol.33 , pp. 1
    • Rokach, L.1
  • 90
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L. Breiman, Mach. Learn., 24, 123 (1996). Bagging Predictors.
    • (1996) Mach. Learn. , vol.24 , pp. 123
    • Breiman, L.1
  • 91
    • 0025448521 scopus 로고
    • The Strength of Weak Learnability
    • R. E. Schapire, Mach. Learn., 5, 197 (1990). The Strength of Weak Learnability.
    • (1990) Mach. Learn. , vol.5 , pp. 197
    • Schapire, R.E.1
  • 92
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R. E. Schapire, J. Comput. Syst. Sci., 55, 119 (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119
    • Freund, Y.1    Schapire, R.E.2
  • 93
    • 83555170269 scopus 로고    scopus 로고
    • Random Classification Noise Defeats All Convex Potential Boosters
    • P. M. Long and R. A. Servedio, Mach. Learn., 78, 287 (2010). Random Classification Noise Defeats All Convex Potential Boosters.
    • (2010) Mach. Learn. , vol.78 , pp. 287
    • Long, P.M.1    Servedio, R.A.2
  • 94
    • 0002258659 scopus 로고
    • L. Erlbaum Associates Inc., Hillsdale, NJ, A Representation for the Adaptive Generation of Simple Sequential Programs
    • N. L. Cramer, in Proceedings of the First International Conference on Genetic Algorithms, L. Erlbaum Associates Inc., Hillsdale, NJ, 1985, pp. 183. A Representation for the Adaptive Generation of Simple Sequential Programs.
    • (1985) Proceedings of the First International Conference on Genetic Algorithms , pp. 183
    • Cramer, N.L.1
  • 96
    • 0004139981 scopus 로고
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, Hierarchical Genetic Algorithms Operating on Populations of Computer Programs
    • J. R. Koza, in IJCAI'89 Proceedings of the 11th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1989, vol 1, pp. 768. Hierarchical Genetic Algorithms Operating on Populations of Computer Programs.
    • (1989) IJCAI'89 Proceedings of the 11th International Joint Conference on Artificial Intelligence , vol.1 , pp. 768
    • Koza, J.R.1
  • 97
    • 0002796467 scopus 로고
    • Balancing Accuracy and Parsimony in Genetic Programming
    • B.-T. Zhang and H. Mühlenbein, Evol. Comput., 3, 17 (1995). Balancing Accuracy and Parsimony in Genetic Programming.
    • (1995) Evol. Comput. , vol.3 , pp. 17
    • Zhang, B.-T.1    Mühlenbein, H.2
  • 99
    • 77954757869 scopus 로고    scopus 로고
    • New Formulation for Compressive Strength of CFRP Confined Concrete Cylinders Using Linear Genetic Programming
    • A. H. Gandomi, A. H. Alavi, and M. G. Sahab, Mater. Struct., 43, 963 (2010). New Formulation for Compressive Strength of CFRP Confined Concrete Cylinders Using Linear Genetic Programming.
    • (2010) Mater. Struct. , vol.43 , pp. 963
    • Gandomi, A.H.1    Alavi, A.H.2    Sahab, M.G.3
  • 100
    • 43549111646 scopus 로고    scopus 로고
    • Empirical Modeling of Fresh and Hardened Properties of Self-Compacting Concretes by Genetic Programming
    • E. Ozbay, M. Gesoglu, and E. Guneyisi, Construct. Build Mater., 22, 1831 (2008). Empirical Modeling of Fresh and Hardened Properties of Self-Compacting Concretes by Genetic Programming.
    • (2008) Construct. Build Mater. , vol.22 , pp. 1831
    • Ozbay, E.1    Gesoglu, M.2    Guneyisi, E.3
  • 101
    • 4644281672 scopus 로고    scopus 로고
    • Prediction of Cement Strength Using Soft Computing Techniques
    • A. Baykasoglu, T. Dereli, and S. Tanis, Cem. Concr. Res., 34, 2083 (2004). Prediction of Cement Strength Using Soft Computing Techniques.
    • (2004) Cem. Concr. Res. , vol.34 , pp. 2083
    • Baykasoglu, A.1    Dereli, T.2    Tanis, S.3
  • 102
    • 78650232140 scopus 로고    scopus 로고
    • Formulation of Flow Number of Asphalt Mixes Using a Hybrid Computational Method
    • A. H. Alavi, M. Ameri, A. H. Gandomi, and M. R. Mirzahosseini, Construct. Build Mater., 25, 1338 (2011). Formulation of Flow Number of Asphalt Mixes Using a Hybrid Computational Method.
    • (2011) Construct. Build Mater. , vol.25 , pp. 1338
    • Alavi, A.H.1    Ameri, M.2    Gandomi, A.H.3    Mirzahosseini, M.R.4
  • 103
    • 34249851467 scopus 로고    scopus 로고
    • Prediction of the Bending Capability of Rolled Metal Sheet by Genetic Programming
    • M. Kovacic, P. Uratnik, M. Brezocnik, and R. Turk, Mater. Manuf. Processes, 22, 634 (2007). Prediction of the Bending Capability of Rolled Metal Sheet by Genetic Programming.
    • (2007) Mater. Manuf. Processes , vol.22 , pp. 634
    • Kovacic, M.1    Uratnik, P.2    Brezocnik, M.3    Turk, R.4
  • 105
    • 0043156348 scopus 로고    scopus 로고
    • Integrated Genetic Programming and Genetic Algorithm Approach to Predict Surface Roughness
    • M. Brezocnik and M. Kovacic, Mater. Manuf. Processes, 18, 475 (2003). Integrated Genetic Programming and Genetic Algorithm Approach to Predict Surface Roughness.
    • (2003) Mater. Manuf. Processes , vol.18 , pp. 475
    • Brezocnik, M.1    Kovacic, M.2
  • 106
    • 84896921383 scopus 로고    scopus 로고
    • Origins of Hole Traps in Hydrogenated Nanocrystalline and Amorphous Silicon Revealed Through Machine Learning
    • T. Mueller, E. Johlin, and J. C. Grossman, Phys. Rev. B, 89, 115 (2014). Origins of Hole Traps in Hydrogenated Nanocrystalline and Amorphous Silicon Revealed Through Machine Learning.
    • (2014) Phys. Rev. B , vol.89 , pp. 115
    • Mueller, T.1    Johlin, E.2    Grossman, J.C.3
  • 108
    • 84926272958 scopus 로고
    • The Philosophy of Exploratory Data Analysis
    • I. J. Good, Philos. Sci., 50, 283 (1983). The Philosophy of Exploratory Data Analysis.
    • (1983) Philos. Sci. , vol.50 , pp. 283
    • Good, I.J.1
  • 109
    • 65349118132 scopus 로고    scopus 로고
    • Design of a Full-Profile-Matching Solution for High-Throughput Analysis of Multiphase Samples Through Powder X-Ray Diffraction
    • L. A. Baumes, M. Moliner, and A. Corma, Chem. Eur. J., 15, 4258 (2009). Design of a Full-Profile-Matching Solution for High-Throughput Analysis of Multiphase Samples Through Powder X-Ray Diffraction.
    • (2009) Chem. Eur. J. , vol.15 , pp. 4258
    • Baumes, L.A.1    Moliner, M.2    Corma, A.3
  • 112
    • 84873751778 scopus 로고
    • An Invariant Form for the Prior Probability in Estimation Problems
    • H. Jeffreys, Proc. R. Soc. Lond. A Math. Phys. Sci., 186, 453(1946). An Invariant Form for the Prior Probability in Estimation Problems.
    • (1946) Proc. R. Soc. Lond. A Math. Phys. Sci. , vol.186 , pp. 453
    • Jeffreys, H.1
  • 113
    • 85019566064 scopus 로고    scopus 로고
    • Proceedings, IEEE Computer Society Conference on, IEEE, New York, 1997. Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval
    • J. Puzicha, T. Hofmann, and J. M. Buhmann, in Computer Vision and Pattern Recognition, 1997. Proceedings, 1997 IEEE Computer Society Conference on, IEEE, New York, 1997. Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval.
    • (1997) Computer Vision and Pattern Recognition, 1997
    • Puzicha, J.1    Hofmann, T.2    Buhmann, J.M.3
  • 115
    • 84871344059 scopus 로고    scopus 로고
    • A Quantitative Description of the Morphological Aspects of Materials Structures Suitable for Quantitative Comparisons of 3D Microstructures
    • P. G. Callahan, J. P. Simmons, and M. De Graef, Model. Simul. Mater. Sci. Eng., 21, 015003 (2013). A Quantitative Description of the Morphological Aspects of Materials Structures Suitable for Quantitative Comparisons of 3D Microstructures.
    • (2013) Model. Simul. Mater. Sci. Eng. , vol.21 , pp. 015003
    • Callahan, P.G.1    Simmons, J.P.2    De Graef, M.3
  • 117
    • 0017930815 scopus 로고
    • Dynamic Programming Algorithm Optimization for Spoken Word Recognition
    • H. Sakoe and S. Chiba, IEEE Trans. Acoust. Speech Signal Process., 26, 43 (1978). Dynamic Programming Algorithm Optimization for Spoken Word Recognition.
    • (1978) IEEE Trans. Acoust. Speech Signal Process. , vol.26 , pp. 43
    • Sakoe, H.1    Chiba, S.2
  • 119
    • 0034313871 scopus 로고    scopus 로고
    • The Earth Mover's Distance as a Metric for Image Retrieval
    • Y. Rubner, C. Tomasi, and L. J. Guibas, Int. J. Comput. Vis., 40, 99 (2000). The Earth Mover's Distance as a Metric for Image Retrieval.
    • (2000) Int. J. Comput. Vis. , vol.40 , pp. 99
    • Rubner, Y.1    Tomasi, C.2    Guibas, L.J.3
  • 120
    • 84870547164 scopus 로고    scopus 로고
    • Australian Computer Society, Inc., Sydney, SparseDTW: a Novel Approach to Speed up Dynamic Time Warping
    • G. Al-Naymat, S. Chawla, and J. Taheri, in Proceedings of the Eighth Australasian Data Mining Conference. Australian Computer Society, Inc., Sydney, 2009, vol 101, pp. 117. SparseDTW: a Novel Approach to Speed up Dynamic Time Warping.
    • (2009) Proceedings of the Eighth Australasian Data Mining Conference , vol.101 , pp. 117
    • Al-Naymat, G.1    Chawla, S.2    Taheri, J.3
  • 121
    • 41749090269 scopus 로고    scopus 로고
    • Toward Accurate Dynamic Time Warping in Linear Time and Space
    • S. Salvador and P. Chan, Intell. Anal., 11, 561 (2007). Toward Accurate Dynamic Time Warping in Linear Time and Space.
    • (2007) Intell. Anal. , vol.11 , pp. 561
    • Salvador, S.1    Chan, P.2
  • 123
  • 124
    • 0000415463 scopus 로고
    • Dissimilarity Analysis: A New Technique of Hierarchical Sub-Division
    • P. Macnaughton-Smith, W. T. Williams, M. B. Dale, and L. G. Mockett, Nature, 202, 1034 (1964). Dissimilarity Analysis: A New Technique of Hierarchical Sub-Division.
    • (1964) Nature , vol.202 , pp. 1034
    • Macnaughton-Smith, P.1    Williams, W.T.2    Dale, M.B.3    Mockett, L.G.4
  • 127
    • 0242679438 scopus 로고    scopus 로고
    • Finding the Number of Clusters in a Dataset
    • C. A. Sugar and G. M. James, J. Am. Stat. Assoc., 98, 750 (2003). Finding the Number of Clusters in a Dataset.
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 750
    • Sugar, C.A.1    James, G.M.2
  • 129
    • 27744558935 scopus 로고    scopus 로고
    • Identification of Amorphous Phases in the Fe-Ni-Co Ternary Alloy System Using Continuous Phase Diagram Material Chips
    • Y. K. Yoo, Q. Xue, Y. S. Chu, S. Xu, U. Hangen, H.-C. Lee, W. Stein, and X.-D. Xiang, Intermetallics, 14, 241 (2006). Identification of Amorphous Phases in the Fe-Ni-Co Ternary Alloy System Using Continuous Phase Diagram Material Chips.
    • (2006) Intermetallics , vol.14 , pp. 241
    • Yoo, Y.K.1    Xue, Q.2    Chu, Y.S.3    Xu, S.4    Hangen, U.5    Lee, H.-C.6    Stein, W.7    Xiang, X.-D.8
  • 132
    • 37849041265 scopus 로고    scopus 로고
    • On the Use of 2-D Moment Invariants for the Automated Classification of Particle Shapes
    • J. P. MacSleyne, J. P. Simmons, and M. De Graef, Acta Mater., 56, 427 (2008). On the Use of 2-D Moment Invariants for the Automated Classification of Particle Shapes.
    • (2008) Acta Mater. , vol.56 , pp. 427
    • MacSleyne, J.P.1    Simmons, J.P.2    De Graef, M.3
  • 133
    • 84880803154 scopus 로고    scopus 로고
    • Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials
    • M. L. Green, I. Takeuchi, and J. R. Hattrick-Simpers, J. Appl. Phys., 113, 231101 (2013). Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials.
    • (2013) J. Appl. Phys. , vol.113 , pp. 231101
    • Green, M.L.1    Takeuchi, I.2    Hattrick-Simpers, J.R.3
  • 134
    • 70350761965 scopus 로고    scopus 로고
    • Rapid Identification of Structural Phases in Combinatorial Thin-Film Libraries Using x-Ray Diffraction and Non-negative Matrix Factorization
    • C. J. Long, D. Bunker, X. Li, V. L. Karen, and I. Takeuchi, Rev. Sci. Instrum., 80, 103902 (2009). Rapid Identification of Structural Phases in Combinatorial Thin-Film Libraries Using x-Ray Diffraction and Non-negative Matrix Factorization.
    • (2009) Rev. Sci. Instrum. , vol.80 , pp. 103902
    • Long, C.J.1    Bunker, D.2    Li, X.3    Karen, V.L.4    Takeuchi, I.5
  • 136
    • 84856512353 scopus 로고    scopus 로고
    • Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
    • M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld, Phys. Rev. Lett., 108, 058301 (2012). Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning.
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.-R.3    von Lilienfeld, O.A.4
  • 137
    • 0042113153 scopus 로고
    • Self-Consistent Equations Including Exchange and Correlation Effects
    • W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965). Self-Consistent Equations Including Exchange and Correlation Effects.
    • (1965) Phys. Rev. , vol.140 , pp. A1133
    • Kohn, W.1    Sham, L.J.2
  • 138
    • 10644250257 scopus 로고
    • Inhomogeneous Electron Gas
    • P. Hohenberg and W. Kohn, Phys. Rev., 136, 864 (1964). Inhomogeneous Electron Gas.
    • (1964) Phys. Rev. , vol.136 , pp. 864
    • Hohenberg, P.1    Kohn, W.2
  • 139
    • 0000754557 scopus 로고
    • Benson, III-Bond Energies
    • W. Sidney, J. Chem. Educ., 42, 502 (1965). Benson, III-Bond Energies.
    • (1965) J. Chem. Educ. , vol.42 , pp. 502
    • Sidney, W.1
  • 140
    • 35448937584 scopus 로고    scopus 로고
    • Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements
    • J. J. P. Stewart, J. Mol. Model., 13, 1173 (2007). Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements.
    • (2007) J. Mol. Model. , vol.13 , pp. 1173
    • Stewart, J.J.P.1
  • 142
    • 79953856961 scopus 로고    scopus 로고
    • The Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network Potentials
    • J. Behler, J. Chem. Phys., 134, 074106 (2011). The Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network Potentials.
    • (2011) J. Chem. Phys. , vol.134 , pp. 074106
    • Behler, J.1
  • 143
    • 34047127421 scopus 로고    scopus 로고
    • Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
    • J. Behler and M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007). Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces.
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 144
    • 56749159245 scopus 로고    scopus 로고
    • Crystal Structure Prediction from First Principles
    • S. M. Woodley and R. Catlow, Nat. Mater., 7, 937 (2008). Crystal Structure Prediction from First Principles.
    • (2008) Nat. Mater. , vol.7 , pp. 937
    • Woodley, S.M.1    Catlow, R.2
  • 145
    • 0000293555 scopus 로고
    • Crystals from First-Principles
    • J. Maddox, Nature, 335, 201 (1988). Crystals from First-Principles.
    • (1988) Nature , vol.335 , pp. 201
    • Maddox, J.1
  • 146
    • 33746652634 scopus 로고    scopus 로고
    • Predicting Crystal Structure by Merging Data Mining with Quantum Mechanics
    • C. C. Fischer, K. J. Tibbetts, D. Morgan, and G. Ceder, Nat. Mater., 5, 641 (2006). Predicting Crystal Structure by Merging Data Mining with Quantum Mechanics.
    • (2006) Nat. Mater. , vol.5 , pp. 641
    • Fischer, C.C.1    Tibbetts, K.J.2    Morgan, D.3    Ceder, G.4
  • 148
    • 84860123425 scopus 로고    scopus 로고
    • Perspective on Density Functional Theory
    • K. Burke, J. Chem. Phys., 136, 150901 (2012). Perspective on Density Functional Theory.
    • (2012) J. Chem. Phys. , vol.136 , pp. 150901
    • Burke, K.1
  • 149
    • 33947716431 scopus 로고
    • Beitrag zur Theorie des Ferromagnetismus
    • E. Ising, Zeitschrift für Physik, 31, 253 (1925). Beitrag zur Theorie des Ferromagnetismus.
    • (1925) Zeitschrift für Physik , vol.31 , pp. 253
    • Ising, E.1
  • 150
    • 48549112275 scopus 로고
    • Generalized Cluster Description of Multicomponent Systems
    • J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica, 128A, 334 (1984). Generalized Cluster Description of Multicomponent Systems.
    • (1984) Physica , vol.128 A , pp. 334
    • Sanchez, J.M.1    Ducastelle, F.2    Gratias, D.3
  • 151
    • 0036672595 scopus 로고    scopus 로고
    • Automating First-Principles Phase Diagram Calculations
    • A. van de Walle and G. Ceder, J. Phase Equilib., 23, 348 (2002). Automating First-Principles Phase Diagram Calculations.
    • (2002) J. Phase Equilib. , vol.23 , pp. 348
    • van de Walle, A.1    Ceder, G.2
  • 152
    • 33745530843 scopus 로고    scopus 로고
    • Obtaining Cluster Expansion Coefficients in Ab Initio Thermodynamics of Multicomponent Lattice-Gas Systems
    • R. Drautz and A. Diaz-Ortiz, Phys. Rev. B, 73, 224207 (2006). Obtaining Cluster Expansion Coefficients in Ab Initio Thermodynamics of Multicomponent Lattice-Gas Systems.
    • (2006) Phys. Rev. B , vol.73 , pp. 224207
    • Drautz, R.1    Diaz-Ortiz, A.2
  • 153
    • 0000825768 scopus 로고
    • Efficient Cluster Expansion for Substitutional Systems
    • D. B. Laks, L. G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev. B, 46, 12587 (1992). Efficient Cluster Expansion for Substitutional Systems.
    • (1992) Phys. Rev. B , vol.46 , pp. 12587
    • Laks, D.B.1    Ferreira, L.G.2    Froyen, S.3    Zunger, A.4
  • 154
    • 85019601677 scopus 로고    scopus 로고
    • Mixed-Basis Cluster Expansion for Thermodynamics of bcc Alloys
    • V. Blum and A. Zunger, Phys. Rev. B, 70, 115108 (2004). Mixed-Basis Cluster Expansion for Thermodynamics of bcc Alloys.
    • (2004) Phys. Rev. B , vol.70 , pp. 115108
    • Blum, V.1    Zunger, A.2
  • 155
    • 68949110632 scopus 로고    scopus 로고
    • Bayesian Approach to Cluster Expansions
    • T. Mueller and G. Ceder, Phys. Rev. B, 80, 024103 (2009). Bayesian Approach to Cluster Expansions.
    • (2009) Phys. Rev. B , vol.80 , pp. 024103
    • Mueller, T.1    Ceder, G.2
  • 156
    • 84867391555 scopus 로고    scopus 로고
    • Ab Initio Determination of Structure-Property Relationships in Alloy Nanoparticles
    • T. Mueller, Phys. Rev. B, 86, 144201 (2012). Ab Initio Determination of Structure-Property Relationships in Alloy Nanoparticles.
    • (2012) Phys. Rev. B , vol.86 , pp. 144201
    • Mueller, T.1
  • 157
    • 84872979901 scopus 로고    scopus 로고
    • Compressive Sensing as a Paradigm for Building Physics Models
    • L. J. Nelson, G. L. W. Hart, F. Zhou, and V. Ozolins, Phys. Rev. B, 87, 035125 (2013). Compressive Sensing as a Paradigm for Building Physics Models.
    • (2013) Phys. Rev. B , vol.87 , pp. 035125
    • Nelson, L.J.1    Hart, G.L.W.2    Zhou, F.3    Ozolins, V.4
  • 158
    • 85019614964 scopus 로고    scopus 로고
    • Massachusetts Institute of Technology, Cambridge, MA, Computational Studies of Hydrogen Storage Materials and the Development of Related Methods
    • T. Mueller, in Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 2007, p. 199. Computational Studies of Hydrogen Storage Materials and the Development of Related Methods.
    • (2007) Department of Materials Science and Engineering , pp. 199
    • Mueller, T.1
  • 161
    • 78649705929 scopus 로고    scopus 로고
    • Exact Expressions for Structure Selection in Cluster Expansions
    • T. Mueller and G. Ceder, Phys. Rev. B, 82, 184107 (2010). Exact Expressions for Structure Selection in Cluster Expansions.
    • (2010) Phys. Rev. B , vol.82 , pp. 184107
    • Mueller, T.1    Ceder, G.2
  • 162
    • 72449196370 scopus 로고    scopus 로고
    • Cluster Expansion Method for Multicomponent Systems Based on Optimal Selection of Structures for Density-Functional Theory Calculations
    • A. Seko, Y. Koyama, and I. Tanaka, Phys. Rev. B, 80, 165122 (2009). Cluster Expansion Method for Multicomponent Systems Based on Optimal Selection of Structures for Density-Functional Theory Calculations.
    • (2009) Phys. Rev. B , vol.80 , pp. 165122
    • Seko, A.1    Koyama, Y.2    Tanaka, I.3
  • 163
    • 79961150674 scopus 로고    scopus 로고
    • Grouping of Structures for Cluster Expansion of Multicomponent Systems with Controlled Accuracy
    • A. Seko and I. Tanaka, Phys. Rev. B, 83, 224111 (2011). Grouping of Structures for Cluster Expansion of Multicomponent Systems with Controlled Accuracy.
    • (2011) Phys. Rev. B , vol.83 , pp. 224111
    • Seko, A.1    Tanaka, I.2
  • 164
    • 52949098334 scopus 로고    scopus 로고
    • Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel
    • Y. C. Lin, J. Zhang, and J. Zhong, Comput. Mater. Sci., 43, 752 (2008). Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel.
    • (2008) Comput. Mater. Sci. , vol.43 , pp. 752
    • Lin, Y.C.1    Zhang, J.2    Zhong, J.3
  • 165
    • 0032834759 scopus 로고    scopus 로고
    • Modelling of Abrasive Flow Machining Process: A Neural Network Approach
    • R. K. Jain, V. K. Jain, and P. K. Kalra, Wear, 231, 242 (1999). Modelling of Abrasive Flow Machining Process: A Neural Network Approach.
    • (1999) Wear , vol.231 , pp. 242
    • Jain, R.K.1    Jain, V.K.2    Kalra, P.K.3
  • 166
    • 0036613964 scopus 로고    scopus 로고
    • Neural Network Model of Creep Strength of Austenitic Stainless Steels
    • T. Sourmail, H. K. D. H. Bhadeshia, and D. J. C. MacKay, Mater. Sci. Technol., 18, 655 (2002). Neural Network Model of Creep Strength of Austenitic Stainless Steels.
    • (2002) Mater. Sci. Technol. , vol.18 , pp. 655
    • Sourmail, T.1    Bhadeshia, H.K.D.H.2    MacKay, D.J.C.3
  • 167
    • 0035979450 scopus 로고    scopus 로고
    • Estimation of the Amount of Retained Austenite in Austempered Ductile Irons Using Neural Networks
    • M. A. Yescas, H. K. D. H. Bhadeshia, and D. J. MacKay, Mater. Sci. Eng. A, 311, 162 (2001). Estimation of the Amount of Retained Austenite in Austempered Ductile Irons Using Neural Networks.
    • (2001) Mater. Sci. Eng. A , vol.311 , pp. 162
    • Yescas, M.A.1    Bhadeshia, H.K.D.H.2    MacKay, D.J.3
  • 168
    • 0035535421 scopus 로고    scopus 로고
    • Neural Network Analysis of Strength and Ductility of Welding Alloys for High Strength Low Alloy Shipbuilding Steels
    • E. A. Metzbower, J. J. DeLoach, S. H. Lalam, and H. K. D. H. Bhadeshia, Sci. Technol. Weld. Joining, 6, 116 (2001). Neural Network Analysis of Strength and Ductility of Welding Alloys for High Strength Low Alloy Shipbuilding Steels.
    • (2001) Sci. Technol. Weld. Joining , vol.6 , pp. 116
    • Metzbower, E.A.1    DeLoach, J.J.2    Lalam, S.H.3    Bhadeshia, H.K.D.H.4
  • 169
    • 79955836602 scopus 로고    scopus 로고
    • Microstructure Informatics Using Higher-Order Statistics and Efficient Data-Mining Protocols
    • S. R. Kalidindi, S. R. Niezgoda, and A. A. Salem, JOM, 63, 34 (2011). Microstructure Informatics Using Higher-Order Statistics and Efficient Data-Mining Protocols.
    • (2011) JOM , vol.63 , pp. 34
    • Kalidindi, S.R.1    Niezgoda, S.R.2    Salem, A.A.3
  • 170
    • 67650257184 scopus 로고    scopus 로고
    • Evaluation of Multilayer Perceptron and Self-Organizing Map Neural Network Topologies Applied on Microstructure Segmentation from Metallographic Images
    • V. H. C. De Albuquerque, A. R. De Alexandria, P. C. Cortez, and J. M. R. S. Tavares, NDT&E Int., 42, 644 (2009). Evaluation of Multilayer Perceptron and Self-Organizing Map Neural Network Topologies Applied on Microstructure Segmentation from Metallographic Images.
    • (2009) NDT&E Int. , vol.42 , pp. 644
    • De Albuquerque, V.H.C.1    De Alexandria, A.R.2    Cortez, P.C.3    Tavares, J.M.R.S.4
  • 171
    • 63749108610 scopus 로고    scopus 로고
    • Application and Further Development of Advanced Image Processing Algorithms for Automated Analysis of Serial Section Image Data
    • J. P. Simmons, P. Chuang, M. Comer, J. E. Spowart, M. D. Uchic, and M. De Graef, Model. Simul. Mater. Sci. Eng., 17, 025002 (2009). Application and Further Development of Advanced Image Processing Algorithms for Automated Analysis of Serial Section Image Data.
    • (2009) Model. Simul. Mater. Sci. Eng. , vol.17 , pp. 025002
    • Simmons, J.P.1    Chuang, P.2    Comer, M.3    Spowart, J.E.4    Uchic, M.D.5    De Graef, M.6
  • 172
    • 84903765681 scopus 로고    scopus 로고
    • 3D Materials Image Segmentation by 2D Propagation: A Graph-Cut Approach Considering Homomorphism
    • J. Waggoner, Y. Zhou, J. Simmons, M. De Graef, and S. Wang, IEEE Trans. Image Process., 22(12), 5282 (2013). 3D Materials Image Segmentation by 2D Propagation: A Graph-Cut Approach Considering Homomorphism.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.12 , pp. 5282
    • Waggoner, J.1    Zhou, Y.2    Simmons, J.3    De Graef, M.4    Wang, S.5
  • 174
    • 49849093306 scopus 로고    scopus 로고
    • Gradient-Based Microstructure Reconstructions from Distributions Using Fast Fourier Transforms
    • D. T. Fullwood, S. R. Kalidindi, S. R. Niezgoda, A. Fast, and N. Hampson, Mater. Sci. Eng. A, 494, 68 (2008). Gradient-Based Microstructure Reconstructions from Distributions Using Fast Fourier Transforms.
    • (2008) Mater. Sci. Eng. A , vol.494 , pp. 68
    • Fullwood, D.T.1    Kalidindi, S.R.2    Niezgoda, S.R.3    Fast, A.4    Hampson, N.5
  • 176
    • 84875970142 scopus 로고    scopus 로고
    • Origins of Structural Hole Traps in Hydrogenated Amorphous Silicon
    • E. Johlin, L. K. Wagner, T. Buonassisi, and J. C. Grossman, Phys. Rev. Lett., 110, 146805 (2013). Origins of Structural Hole Traps in Hydrogenated Amorphous Silicon.
    • (2013) Phys. Rev. Lett. , vol.110 , pp. 146805
    • Johlin, E.1    Wagner, L.K.2    Buonassisi, T.3    Grossman, J.C.4
  • 177
    • 79953243770 scopus 로고    scopus 로고
    • Semiconductor Solar Cells: Recent Progress in Terrestrial Applications
    • V. Avrutin, N. Izyumskaya, and H. Morkoç, Superlattices Microstruct., 49, 337 (2011). Semiconductor Solar Cells: Recent Progress in Terrestrial Applications.
    • (2011) Superlattices Microstruct. , vol.49 , pp. 337
    • Avrutin, V.1    Izyumskaya, N.2    Morkoç, H.3
  • 178
    • 79551633973 scopus 로고    scopus 로고
    • Urbach Tails of Amorphous Silicon
    • D. A. Drabold, Y. Li, B. Cai, and M. Zhang, Phys. Rev. B, 83, 045201 (2011). Urbach Tails of Amorphous Silicon.
    • (2011) Phys. Rev. B , vol.83 , pp. 045201
    • Drabold, D.A.1    Li, Y.2    Cai, B.3    Zhang, M.4
  • 179
    • 44249125730 scopus 로고    scopus 로고
    • Atomistic Origin of Urbach Tails in Amorphous Silicon
    • Y. Pan, F. Inam, M. Zhang, and D. A. Drabold, Phys. Rev. Lett., 100, 206403 (2008). Atomistic Origin of Urbach Tails in Amorphous Silicon.
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 206403
    • Pan, Y.1    Inam, F.2    Zhang, M.3    Drabold, D.A.4
  • 180
    • 44349125718 scopus 로고    scopus 로고
    • Topological and Topological-Electronic Correlations in Amorphous Silicon
    • Y. Pan, M. Zhang, and D. A. Drabold, J. Non Cryst. Solids, 354, 3480 (2008). Topological and Topological-Electronic Correlations in Amorphous Silicon.
    • (2008) J. Non Cryst. Solids , vol.354 , pp. 3480
    • Pan, Y.1    Zhang, M.2    Drabold, D.A.3
  • 181
    • 0000893292 scopus 로고    scopus 로고
    • Theoretical Study on the Nature of Band-Tail States in Amorphous Si
    • P. A. Fedders, D. A. Drabold, and S. Nakhmanson, Phys. Rev. B, 58, 15624 (1998). Theoretical Study on the Nature of Band-Tail States in Amorphous Si.
    • (1998) Phys. Rev. B , vol.58 , pp. 15624
    • Fedders, P.A.1    Drabold, D.A.2    Nakhmanson, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.