메뉴 건너뛰기




Volumn 2, Issue 2, 2009, Pages 323-343

The split Bregman method for L1-regularized problems

Author keywords

Compressed sensing; Constrained optimization; L1 regularization; Total variation denoising

Indexed keywords

COMPRESSED SENSING; CONSTRAINED OPTIMIZATION; IMAGE DENOISING; MAGNETIC RESONANCE IMAGING; OPTIMIZATION; SIGNAL RECONSTRUCTION;

EID: 84969334819     PISSN: None     EISSN: 19364954     Source Type: Journal    
DOI: 10.1137/080725891     Document Type: Article
Times cited : (3963)

References (30)
  • 4
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization
    • L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization, USSR Comput. Math. and Math. Phys., 7 (1967), pp. 200-217.
    • (1967) USSR Comput. Math. and Math. Phys , vol.7 , pp. 200-217
    • Bregman, L.1
  • 5
    • 77951959023 scopus 로고    scopus 로고
    • Linearized Bregman iterations for compressed sensing
    • to appear
    • J. F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for compressed sensing, Math. Comp., to appear.
    • Math. Comp
    • Cai, J.F.1    Osher, S.2    Shen, Z.3
  • 7
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. J. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489-509.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 9
    • 0033295350 scopus 로고    scopus 로고
    • A nonlinear primal-dual method for total variation-based image restoration
    • T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964-1977.
    • (1999) SIAM J. Sci. Comput , vol.20 , pp. 1964-1977
    • Chan, T.F.1    Golub, G.H.2    Mulet, P.3
  • 10
    • 25144515901 scopus 로고    scopus 로고
    • A fast and exact algorithm for total variation minimization
    • Lecture Notes in Comput. Sci. 3522, Springer-Verlag, Berlin
    • J. Darbon and M. Sigelle, A fast and exact algorithm for total variation minimization, in IbPRIA, Lecture Notes in Comput. Sci. 3522, Springer-Verlag, Berlin, 2005, pp. 351-359.
    • (2005) IbPRIA , pp. 351-359
    • Darbon, J.1    Sigelle, M.2
  • 11
  • 14
    • 34250309398 scopus 로고    scopus 로고
    • MR image reconstruction from sparse radial samples by using iterative refinement procedures
    • L. He, T.-C. Chang, and S. Osher, MR image reconstruction from sparse radial samples by using iterative refinement procedures, in Proceedings of the 13th Annual Meeting of ISMRM, 2005, p. 696.
    • (2005) Proceedings of the 13th Annual Meeting of ISMRM , pp. 696
    • He, L.1    Chang, T.-C.2    Osher, S.3
  • 17
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • M. Lustig, D. Donoho, and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., 58 (2007), pp. 1182-1195.
    • (2007) Magn. Reson. Med , vol.58 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.3
  • 22
    • 19844370110 scopus 로고    scopus 로고
    • An iterative regularization method for total variation-based image restoration
    • S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), pp. 460-489.
    • (2005) Multiscale Model. Simul , vol.4 , pp. 460-489
    • Osher, S.1    Burger, M.2    Goldfarb, D.3    Xu, J.4    Yin, W.5
  • 23
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268.
    • (1992) Phys. D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 25
    • 0242676282 scopus 로고
    • A multigrid method for total variation-based image denoising
    • Birkhäuser-Boston, Boston
    • C. Vogel, A multigrid method for total variation-based image denoising, in Computation and Control, IV, Progr. Systems Control Theory 20, Birkhäuser-Boston, Boston, 1995, pp. 323-331.
    • (1995) Computation and Control, IV, Progr. Systems Control Theory 20 , pp. 323-331
    • Vogel, C.1
  • 26
    • 0001556589 scopus 로고    scopus 로고
    • Iterative methods for total variation denoising
    • C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), pp. 227-238.
    • (1996) SIAM J. Sci. Comput , vol.17 , pp. 227-238
    • Vogel, C.R.1    Oman, M.E.2
  • 28
    • 33847715169 scopus 로고    scopus 로고
    • Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising
    • J. Xu and S. Osher, Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising, IEEE Trans. Image Process., 16 (2007), pp. 534-544.
    • (2007) IEEE Trans. Image Process , vol.16 , pp. 534-544
    • Xu, J.1    Osher, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.