메뉴 건너뛰기




Volumn 117, Issue 32, 2013, Pages 7356-7366

A density-functional theory-based neural network potential for water clusters including van der waals corrections

Author keywords

[No Author keywords available]

Indexed keywords

EMPIRICAL FORCE FIELDS; EXCHANGE-CORRELATION FUNCTIONALS; GENERALIZED GRADIENT APPROXIMATIONS; LARGE-SCALE MOLECULAR DYNAMICS; MOLECULAR DISSOCIATION; QUANTUM-CHEMICAL METHODS; VAN DER WAALS CORRECTION; VAN DER WAALS INTERACTIONS;

EID: 84882446377     PISSN: 10895639     EISSN: 15205215     Source Type: Journal    
DOI: 10.1021/jp401225b     Document Type: Article
Times cited : (196)

References (88)
  • 2
    • 0035906617 scopus 로고    scopus 로고
    • Water: From Clusters to the Bulk
    • Ludwig, R. Water: From Clusters to the Bulk Angew. Chem., Int. Ed. 2001, 40, 1808-1827
    • (2001) Angew. Chem., Int. Ed. , vol.40 , pp. 1808-1827
    • Ludwig, R.1
  • 3
    • 4243606192 scopus 로고
    • Unified Approach for Molecular-Dynamics and Density-Functional Theory
    • Car, R.; Parrinello, M. Unified Approach for Molecular-Dynamics and Density-Functional Theory Phys. Rev. Lett. 1985, 55, 2471-2474
    • (1985) Phys. Rev. Lett. , vol.55 , pp. 2471-2474
    • Car, R.1    Parrinello, M.2
  • 7
    • 39749138302 scopus 로고    scopus 로고
    • Development of Transferable Interaction Potentials for Water. V. Extension of the Flexible, Polarizable, Thole-Type Model Potential (TTM3-F, v. 3.0) to Describe the Vibrational Spectra of Water Clusters and Liquid Water
    • Fanourgakis, G. S.; Xantheas, S. S. Development of Transferable Interaction Potentials for Water. V. Extension of the Flexible, Polarizable, Thole-Type Model Potential (TTM3-F, v. 3.0) to Describe the Vibrational Spectra of Water Clusters and Liquid Water J. Chem. Phys. 2008, 128) 074506
    • (2008) J. Chem. Phys. , Issue.128 , pp. 074506
    • Fanourgakis, G.S.1    Xantheas, S.S.2
  • 8
    • 78549264425 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation Study of Water Surfaces: Comparison of Flexible Water Models
    • Yuet, P.; Blankschtein, D. Molecular Dynamics Simulation Study of Water Surfaces: Comparison of Flexible Water Models J. Phys. Chem. B 2010, 114, 13786
    • (2010) J. Phys. Chem. B , vol.114 , pp. 13786
    • Yuet, P.1    Blankschtein, D.2
  • 9
    • 75749150144 scopus 로고    scopus 로고
    • A Second Generation Distributed Point Polarizable Water Model
    • Kumar, R.; Wang, F.-F.; Jenness, G.; Jordan, K. A Second Generation Distributed Point Polarizable Water Model J. Chem. Phys. 2010, 132, 014309
    • (2010) J. Chem. Phys. , vol.132 , pp. 014309
    • Kumar, R.1    Wang, F.-F.2    Jenness, G.3    Jordan, K.4
  • 10
    • 77956315929 scopus 로고    scopus 로고
    • Development and Validation of a ReaxFF Reactive Force Field for Cu Cation/Water Interactions and Copper Metal/Metal Oxide/Metal Hydroxide Condensed Phases
    • van Duin, A. C. T.; Bryantsev, V. S.; Diallo, M. S.; Goddard, W. A.; Rahaman, O.; Doren, D. J.; Raymand, D.; Hermansson, K. Development and Validation of a ReaxFF Reactive Force Field for Cu Cation/Water Interactions and Copper Metal/Metal Oxide/Metal Hydroxide Condensed Phases J. Phys. Chem. A 2010, 114, 9507
    • (2010) J. Phys. Chem. A , vol.114 , pp. 9507
    • Van Duin, A.C.T.1    Bryantsev, V.S.2    Diallo, M.S.3    Goddard, W.A.4    Rahaman, O.5    Doren, D.J.6    Raymand, D.7    Hermansson, K.8
  • 12
    • 84859254835 scopus 로고    scopus 로고
    • Ab Initio Parameterization of an All-Atom Polarizable and Dissociable Force Field for Water
    • Pinilla, C.; Irani, A. H.; Seriani, N.; Scandolo, S. Ab Initio Parameterization of an All-Atom Polarizable and Dissociable Force Field for Water J. Chem. Phys. 2012, 136, 114511
    • (2012) J. Chem. Phys. , vol.136 , pp. 114511
    • Pinilla, C.1    Irani, A.H.2    Seriani, N.3    Scandolo, S.4
  • 13
    • 68849117520 scopus 로고    scopus 로고
    • Full-Dimensional, Ab Initio Potential Energy and Dipole Moment Surfaces for Water
    • Wang, Y. M.; Shepler, B. C.; Braams, B. J.; Bowman, J. M. Full-Dimensional, Ab Initio Potential Energy and Dipole Moment Surfaces for Water J. Chem. Phys. 2009, 131, 054511
    • (2009) J. Chem. Phys. , vol.131 , pp. 054511
    • Wang, Y.M.1    Shepler, B.C.2    Braams, B.J.3    Bowman, J.M.4
  • 15
    • 77951127031 scopus 로고    scopus 로고
    • Towards an Ab Initio Flexible Potential for Water, and Post-Harmonic Quantum Vibrational Analysis of Water Clusters
    • Wang, Y. M.; Bowman, J. M. Towards an Ab Initio Flexible Potential for Water, and Post-Harmonic Quantum Vibrational Analysis of Water Clusters Chem. Phys. Lett. 2010, 491, 1-10
    • (2010) Chem. Phys. Lett. , vol.491 , pp. 1-10
    • Wang, Y.M.1    Bowman, J.M.2
  • 16
    • 72449129392 scopus 로고    scopus 로고
    • Permutationally Invariant Potential Energy Surfaces in High Dimensionality
    • Braams, B. J.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces in High Dimensionality Int. Rev. Phys. Chem. 2009, 28, 577
    • (2009) Int. Rev. Phys. Chem. , vol.28 , pp. 577
    • Braams, B.J.1    Bowman, J.M.2
  • 18
    • 40549120342 scopus 로고    scopus 로고
    • Polarizable Interaction Potential for Water from Coupled Cluster Calculations. I. Analysis of Dimer Potential Energy Surface
    • Bukowski, R.; Szalewicz, K.; Groenenboom, G. C.; van der Avoird, A. Polarizable Interaction Potential for Water from Coupled Cluster Calculations. I. Analysis of Dimer Potential Energy Surface J. Chem. Phys. 2008, 128, 094313
    • (2008) J. Chem. Phys. , vol.128 , pp. 094313
    • Bukowski, R.1    Szalewicz, K.2    Groenenboom, G.C.3    Van Der Avoird, A.4
  • 19
    • 33745620169 scopus 로고    scopus 로고
    • A New Potential Energy Surface for the Water Dimer Obtained from Separate Fits of Ab Initio Electrostatic, Induction, Dispersion and Exchange Energy Contributions
    • Torheyden, M.; Jansen, G. A New Potential Energy Surface for the Water Dimer Obtained from Separate Fits of Ab Initio Electrostatic, Induction, Dispersion and Exchange Energy Contributions Mol. Phys. 2006, 104, 2101-2138
    • (2006) Mol. Phys. , vol.104 , pp. 2101-2138
    • Torheyden, M.1    Jansen, G.2
  • 20
    • 84871567760 scopus 로고    scopus 로고
    • Toward a Universal Water Model: First Principles Simulations from the Dimer to the Liquid Phase
    • Babin, V.; Medders, G. R.; Paesani, F. Toward a Universal Water Model: First Principles Simulations from the Dimer to the Liquid Phase J. Phys. Chem. Lett. 2012, 3, 3765-3769
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 3765-3769
    • Babin, V.1    Medders, G.R.2    Paesani, F.3
  • 21
    • 84882290602 scopus 로고    scopus 로고
    • Machine learning for predictive condensed-phase simulation
    • ArXiv.org, E-Print arXiv:1302.5680 [cond-mat.mtrl-sci]
    • Bartok, A. P.; Gillan, M. J.; Manby, F. R.; Csanyi, G. Machine learning for predictive condensed-phase simulation arXiv.org, e-Print Arch., Condens. Matter 2013, arXiv:1302.5680 [cond-mat.mtrl-sci]
    • (2013) Arch., Condens. Matter
    • Bartok, A.P.1    Gillan, M.J.2    Manby, F.R.3    Csanyi, G.4
  • 22
    • 0036836445 scopus 로고    scopus 로고
    • A Reappraisal of What We Have Learnt during Three Decades of Computer Simulations on Water
    • Guillot, B. A Reappraisal of What We Have Learnt During Three Decades of Computer Simulations on Water J. Mol. Liq. 2002, 101, 219-260
    • (2002) J. Mol. Liq. , vol.101 , pp. 219-260
    • Guillot, B.1
  • 23
    • 72149094875 scopus 로고    scopus 로고
    • Towards the Complete Understanding of Water by a First-Principles Computational Approach
    • Szalewicz, K.; Leforestier, C.; van der Avoird, A. Towards the Complete Understanding of Water by a First-Principles Computational Approach Chem. Phys. Lett. 2009, 482, 1-14
    • (2009) Chem. Phys. Lett. , vol.482 , pp. 1-14
    • Szalewicz, K.1    Leforestier, C.2    Van Der Avoird, A.3
  • 24
    • 80455177304 scopus 로고    scopus 로고
    • Simulating Water with Rigid Non-Polarizable Models: A General Perspective
    • Vega, C.; Abascal, J. L. F. Simulating Water With Rigid Non-Polarizable Models: A General Perspective Phys. Chem. Chem. Phys. 2011, 13, 19663-19688
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 19663-19688
    • Vega, C.1    Abascal, J.L.F.2
  • 26
    • 0024861871 scopus 로고
    • Approximation by Superpositions of a Sigmoidal Function
    • Cybenko, G. Approximation by Superpositions of a Sigmoidal Function Math. Control Signals Syst. 1989, 2, 303-14
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 27
    • 77949425807 scopus 로고    scopus 로고
    • Potential Energy Surfaces Fitted by Artificial Neural Networks
    • Handley, C. M.; Popelier, P. L. A. Potential Energy Surfaces Fitted by Artificial Neural Networks J. Phys. Chem. A 2010, 114, 3371-3383
    • (2010) J. Phys. Chem. A , vol.114 , pp. 3371-3383
    • Handley, C.M.1    Popelier, P.L.A.2
  • 28
    • 80053512754 scopus 로고    scopus 로고
    • Neural Network Potential-Energy Surfaces in Chemistry: A Tool for Large-Scale Simulations
    • Behler, J. Neural Network Potential-Energy Surfaces in Chemistry: A Tool for Large-Scale Simulations Phys. Chem. Chem. Phys. 2011, 13, 17930
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 17930
    • Behler, J.1
  • 29
    • 33646420352 scopus 로고    scopus 로고
    • A Nested Molecule-Independent Neural Network Approach for High-Quality Potential Fits
    • Manzhos, S.; Wang, X. G.; Dawes, R.; Carrington, T., Jr. A Nested Molecule-Independent Neural Network Approach for High-Quality Potential Fits J. Phys. Chem. A 2006, 110, 5295-5304
    • (2006) J. Phys. Chem. A , vol.110 , pp. 5295-5304
    • Manzhos, S.1    Wang, X.G.2    Dawes, R.3    Carrington Jr., T.4
  • 30
    • 84861086742 scopus 로고    scopus 로고
    • Modified Feed-Forward Neural Network Structures and Combined-Function- Derivative Approximations Incorporating Exchange Symmetry for Potential Energy Surface Fitting
    • Nguyen, H. T. T.; Le, H. M. Modified Feed-Forward Neural Network Structures and Combined-Function-Derivative Approximations Incorporating Exchange Symmetry for Potential Energy Surface Fitting J. Phys. Chem. A 2012, 116, 4629-4638
    • (2012) J. Phys. Chem. A , vol.116 , pp. 4629-4638
    • Nguyen, H.T.T.1    Le, H.M.2
  • 31
    • 0031555986 scopus 로고    scopus 로고
    • Description of the Potential Energy Surface of the Water Dimer with an Artificial Neural Network
    • No, K. T.; Chang, B. H.; Kim, S. Y.; Jhon, M. S.; Scheraga, H. A. Description of the Potential Energy Surface of the Water Dimer with an Artificial Neural Network Chem. Phys. Lett. 1997, 271, 152-156
    • (1997) Chem. Phys. Lett. , vol.271 , pp. 152-156
    • No, K.T.1    Chang, B.H.2    Kim, S.Y.3    Jhon, M.S.4    Scheraga, H.A.5
  • 32
    • 0037163980 scopus 로고    scopus 로고
    • A Polarizable Force Field for Water Using an Artificial Neural Network
    • Cho, K. H.; No, K. T.; Scheraga, H. A. A Polarizable Force Field for Water Using an Artificial Neural Network J. Mol. Struct. 2002, 641, 77-91
    • (2002) J. Mol. Struct. , vol.641 , pp. 77-91
    • Cho, K.H.1    No, K.T.2    Scheraga, H.A.3
  • 33
    • 0012032724 scopus 로고    scopus 로고
    • Representation of Intermolecular Potential Functions by Neural Networks
    • Gassner, H.; Probst, M.; Lauenstein, A.; Hermansson, K. Representation of Intermolecular Potential Functions by Neural Networks J. Phys. Chem. A 1998, 102, 4596-4605
    • (1998) J. Phys. Chem. A , vol.102 , pp. 4596-4605
    • Gassner, H.1    Probst, M.2    Lauenstein, A.3    Hermansson, K.4
  • 34
    • 67650172396 scopus 로고    scopus 로고
    • Dynamically Polarizable Water Potential Based on Multipole Moments Trained by Machine Learning
    • Handley, C. M.; Popelier, P. L. A. Dynamically Polarizable Water Potential Based on Multipole Moments Trained by Machine Learning J. Chem. Theory Comput. 2009, 5, 1474-1489
    • (2009) J. Chem. Theory Comput. , vol.5 , pp. 1474-1489
    • Handley, C.M.1    Popelier, P.L.A.2
  • 35
    • 68949154402 scopus 로고    scopus 로고
    • Optimal Construction of a Fast and Accurate Polarisable Water Potential Based on Multipole Moments Trained by Machine Learning
    • Handley, C. M.; Hawe, G. I.; Kell, D. B.; Popelier, P. L. A. Optimal Construction of a Fast and Accurate Polarisable Water Potential Based on Multipole Moments Trained by Machine Learning Phys. Chem. Chem. Phys. 2009, 11, 6365-6376
    • (2009) Phys. Chem. Chem. Phys. , vol.11 , pp. 6365-6376
    • Handley, C.M.1    Hawe, G.I.2    Kell, D.B.3    Popelier, P.L.A.4
  • 36
    • 84857263925 scopus 로고    scopus 로고
    • A Neural Network Potential-Energy Surface for the Water Dimer Based on Environment-Dependent Atomic Energies and Charges
    • Morawietz, T.; Sharma, V.; Behler, J. A Neural Network Potential-Energy Surface for the Water Dimer Based on Environment-Dependent Atomic Energies and Charges J. Chem. Phys. 2012, 136, 064103
    • (2012) J. Chem. Phys. , vol.136 , pp. 064103
    • Morawietz, T.1    Sharma, V.2    Behler, J.3
  • 37
    • 84882403612 scopus 로고    scopus 로고
    • A Full-Dimensional Neural Network Potential-Energy Surface for Water Clusters up to the Hexamer
    • Submitted for publication
    • Morawietz, T.; Behler, J. A Full-Dimensional Neural Network Potential-Energy Surface for Water Clusters up to the Hexamer. Z. Phys. Chem. 2013, Submitted for publication
    • (2013) Z. Phys. Chem.
    • Morawietz, T.1    Behler, J.2
  • 38
    • 4243943295 scopus 로고    scopus 로고
    • Generalized Gradient Approximation Made Simple
    • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865-3868
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865-3868
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 39
    • 4644265529 scopus 로고    scopus 로고
    • Improved Adsorption Energetics Within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals
    • Hammer, B.; Hansen, L. B.; Norskov, J. K. Improved Adsorption Energetics Within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals Phys. Rev. B 1999, 59, 7413-7421
    • (1999) Phys. Rev. B , vol.59 , pp. 7413-7421
    • Hammer, B.1    Hansen, L.B.2    Norskov, J.K.3
  • 40
    • 84866983386 scopus 로고    scopus 로고
    • Perspective: Advances and Challenges in Treating van der Waals Dispersion Forces in Density Functional Theory
    • Klimes, J.; Michaelides, A. Perspective: Advances and Challenges in Treating van der Waals Dispersion Forces in Density Functional Theory J. Chem. Phys. 2012, 137, 120901
    • (2012) J. Chem. Phys. , vol.137 , pp. 120901
    • Klimes, J.1    Michaelides, A.2
  • 42
    • 61349180195 scopus 로고    scopus 로고
    • Accurate Molecular van der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data
    • Tkatchenko, A.; Scheffler, M. Accurate Molecular van der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data Phys. Rev. Lett. 2009, 102, 073005
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 073005
    • Tkatchenko, A.1    Scheffler, M.2
  • 43
    • 19644400832 scopus 로고    scopus 로고
    • Optimization of Effective Atom Centered Potentials for London Dispersion Forces in Density Functional Theory
    • von Lilienfeld, O.; Tavernelli, I.; Rothlisberger, U.; Sebastiani, D. Optimization of Effective Atom Centered Potentials for London Dispersion Forces in Density Functional Theory Phys. Rev. Lett. 2004, 93
    • (2004) Phys. Rev. Lett. , pp. 93
    • Von Lilienfeld, O.1    Tavernelli, I.2    Rothlisberger, U.3    Sebastiani, D.4
  • 44
    • 77951680464 scopus 로고    scopus 로고
    • A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu
    • Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu J. Chem. Phys. 2010, 132, 154104
    • (2010) J. Chem. Phys. , vol.132 , pp. 154104
    • Grimme, S.1    Antony, J.2    Ehrlich, S.3    Krieg, H.4
  • 45
    • 84856747105 scopus 로고    scopus 로고
    • Dispersive Interactions in Water Bilayers at Metallic Surfaces: A Comparison of the PBE and RPBE Functional Including Semiempirical Dispersion Corrections
    • Tonigold, K.; Groß, A. Dispersive Interactions in Water Bilayers at Metallic Surfaces: A Comparison of the PBE and RPBE Functional Including Semiempirical Dispersion Corrections J. Comput. Chem. 2012, 33, 695-701
    • (2012) J. Comput. Chem. , vol.33 , pp. 695-701
    • Tonigold, K.1    Groß, A.2
  • 46
    • 0032495943 scopus 로고    scopus 로고
    • The Fitting of Potential Energy Surfaces Using Neural Networks. Application to the Study of the Photodissociation Processes
    • Prudente, F. V.; Neto, J. J. S. The Fitting of Potential Energy Surfaces Using Neural Networks. Application to the Study of the Photodissociation Processes Chem. Phys. Lett. 1998, 287, 585-589
    • (1998) Chem. Phys. Lett. , vol.287 , pp. 585-589
    • Prudente, F.V.1    Neto, J.J.S.2
  • 47
    • 22944464406 scopus 로고    scopus 로고
    • Ab Initio Potential-Energy Surfaces for Complex, Multichannel Systems Using Modified Novelty Sampling and Feedforward Neural Networks
    • Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R. Ab Initio Potential-Energy Surfaces for Complex, Multichannel Systems Using Modified Novelty Sampling and Feedforward Neural Networks J. Chem. Phys. 2005, 122, 084104
    • (2005) J. Chem. Phys. , vol.122 , pp. 084104
    • Raff, L.M.1    Malshe, M.2    Hagan, M.3    Doughan, D.I.4    Rockley, M.G.5    Komanduri, R.6
  • 48
    • 0141938557 scopus 로고    scopus 로고
    • The Use of Neural Networks for Fitting Potential Energy Surfaces: A Comparative Case Study for the H-3(+) Molecule
    • Rocha, T. M.; Oliveira, Z. T.; Malbouisson, L. A. C.; Gargano, R.; Neto, J. J. S. The Use of Neural Networks for Fitting Potential Energy Surfaces: A Comparative Case Study for the H-3(+) Molecule Int. J. Quantum Chem. 2003, 95, 281-288
    • (2003) Int. J. Quantum Chem. , vol.95 , pp. 281-288
    • Rocha, T.M.1    Oliveira, Z.T.2    Malbouisson, L.A.C.3    Gargano, R.4    Neto, J.J.S.5
  • 50
    • 33845324128 scopus 로고    scopus 로고
    • Using Neural Networks to Represent Potential Surfaces as Sums of Products
    • Manzhos, S.; Carrington, T., Jr. Using Neural Networks to Represent Potential Surfaces as Sums of Products J. Chem. Phys. 2006, 125, 194105
    • (2006) J. Chem. Phys. , vol.125 , pp. 194105
    • Manzhos, S.1    Carrington Jr., T.2
  • 51
    • 57649225620 scopus 로고    scopus 로고
    • Using Neural Networks, Optimized Coordinates, and High-Dimensional Model Representations to Obtain a Vinyl Bromide Potential Surface
    • Manzhos, S.; Carrington, T., Jr. Using Neural Networks, Optimized Coordinates, and High-Dimensional Model Representations to Obtain a Vinyl Bromide Potential Surface J. Chem. Phys. 2008, 129, 224104
    • (2008) J. Chem. Phys. , vol.129 , pp. 224104
    • Manzhos, S.1    Carrington Jr., T.2
  • 52
    • 19644389243 scopus 로고
    • Neural-Network Models of Potential-Energy Surfaces
    • Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. Neural-Network Models of Potential-Energy Surfaces J. Chem. Phys. 1995, 103, 4129-4137
    • (1995) J. Chem. Phys. , vol.103 , pp. 4129-4137
    • Blank, T.B.1    Brown, S.D.2    Calhoun, A.W.3    Doren, D.J.4
  • 53
    • 4444243883 scopus 로고    scopus 로고
    • Representing High-Dimensional Potential-Energy Surfaces for Reactions at Surfaces by Neural Networks
    • Lorenz, S.; Groß, A.; Scheffler, M. Representing High-Dimensional Potential-Energy Surfaces for Reactions at Surfaces by Neural Networks Chem. Phys. Lett. 2004, 395, 210-215
    • (2004) Chem. Phys. Lett. , vol.395 , pp. 210-215
    • Lorenz, S.1    Groß, A.2    Scheffler, M.3
  • 54
    • 34547842566 scopus 로고    scopus 로고
    • Representing Molecule-Surface Interactions with Symmetry-Adapted Neural Networks
    • Behler, J.; Lorenz, S.; Reuter, K. Representing Molecule-Surface Interactions with Symmetry-Adapted Neural Networks J. Chem. Phys. 2007, 127, 014705
    • (2007) J. Chem. Phys. , vol.127 , pp. 014705
    • Behler, J.1    Lorenz, S.2    Reuter, K.3
  • 56
    • 39349085778 scopus 로고    scopus 로고
    • Ab Initio Molecular Dynamics of Hydrogen Dissociation on Metal Surfaces Using Neural Networks and Novelty Sampling
    • Ludwig, J.; Vlachos, D. G. Ab Initio Molecular Dynamics of Hydrogen Dissociation on Metal Surfaces Using Neural Networks and Novelty Sampling J. Chem. Phys. 2007, 127, 154716
    • (2007) J. Chem. Phys. , vol.127 , pp. 154716
    • Ludwig, J.1    Vlachos, D.G.2
  • 57
    • 77249140994 scopus 로고    scopus 로고
    • 2O on Cu(100) Using a Continuous Potential Energy Surface
    • 2O on Cu(100) Using a Continuous Potential Energy Surface Surf. Sci. 2010, 604, 555-561
    • (2010) Surf. Sci. , vol.604 , pp. 555-561
    • Manzhos, S.1    Yamashita, K.2
  • 58
    • 34047127421 scopus 로고    scopus 로고
    • Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
    • Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces Phys. Rev. Lett. 2007, 98, 146401
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 59
    • 79953856961 scopus 로고    scopus 로고
    • Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network Potentials
    • Behler, J. Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network Potentials J. Chem. Phys. 2011, 134, 074106
    • (2011) J. Chem. Phys. , vol.134 , pp. 074106
    • Behler, J.1
  • 60
    • 79961106334 scopus 로고    scopus 로고
    • High-Dimensional Neural-Network Potentials for Multicomponent Systems: Applications to Zinc Oxide
    • Artrith, N.; Morawietz, T.; Behler, J. High-Dimensional Neural-Network Potentials for Multicomponent Systems: Applications to Zinc Oxide Phys. Rev. B 2011, 83, 153101
    • (2011) Phys. Rev. B , vol.83 , pp. 153101
    • Artrith, N.1    Morawietz, T.2    Behler, J.3
  • 61
    • 0001553329 scopus 로고
    • Bonded-Atom Fragments for Describing Molecular Charge-Densities
    • Hirshfeld, F. L. Bonded-Atom Fragments for Describing Molecular Charge-Densities Theor. Chim. Acta 1977, 44, 129-138
    • (1977) Theor. Chim. Acta , vol.44 , pp. 129-138
    • Hirshfeld, F.L.1
  • 62
    • 84977266737 scopus 로고
    • Die Berechnung Optischer und Elektrostatischer Gitterpotentiale
    • Ewald, P. Die Berechnung Optischer und Elektrostatischer Gitterpotentiale Ann. Phys. 1921, 64, 253
    • (1921) Ann. Phys. , vol.64 , pp. 253
    • Ewald, P.1
  • 63
    • 43249123138 scopus 로고    scopus 로고
    • Metadynamics Simulations of the High-Pressure Phases of Silicon Employing a High-Dimensional Neural Network Potential
    • Behler, J.; Martoňák, R.; Donadio, D.; Parrinello, M. Metadynamics Simulations of the High-Pressure Phases of Silicon Employing a High-Dimensional Neural Network Potential Phys. Rev. Lett. 2008, 100, 185501
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 185501
    • Behler, J.1    Martoňák, R.2    Donadio, D.3    Parrinello, M.4
  • 64
    • 56749176216 scopus 로고    scopus 로고
    • Pressure-Induced Phase Transitions in Silicon Studied by Neural Network-Based Metadynamics Simulations
    • Behler, J.; Martoňák, R.; Donadio, D.; Parrinello, M. Pressure-Induced Phase Transitions in Silicon Studied by Neural Network-Based Metadynamics Simulations Phys. Status Solidi B 2008, 245, 2618-2629
    • (2008) Phys. Status Solidi B , vol.245 , pp. 2618-2629
    • Behler, J.1    Martoňák, R.2    Donadio, D.3    Parrinello, M.4
  • 65
    • 84856412489 scopus 로고    scopus 로고
    • High-Dimensional Neural Network Potentials for Metal Surfaces: A Prototype Study for Copper
    • Artrith, N.; Behler, J. High-Dimensional Neural Network Potentials for Metal Surfaces: A Prototype Study for Copper Phys. Rev. B 2012, 85, 045439
    • (2012) Phys. Rev. B , vol.85 , pp. 045439
    • Artrith, N.1    Behler, J.2
  • 66
    • 84861702414 scopus 로고    scopus 로고
    • Construction of High-Dimensional Neural Network Potentials Using Environment-Dependent Atom Pairs
    • Jose, K. V. J.; Artrith, N.; Behler, J. Construction of High-Dimensional Neural Network Potentials Using Environment-Dependent Atom Pairs J. Chem. Phys. 2012, 136, 194111
    • (2012) J. Chem. Phys. , vol.136 , pp. 194111
    • Jose, K.V.J.1    Artrith, N.2    Behler, J.3
  • 67
    • 84878682578 scopus 로고    scopus 로고
    • Neural Network Potentials for Metals and Oxides - First Applications to Copper Clusters at Zinc Oxide
    • 10.1002/pssb.201248370
    • Artrith, N.; Hiller, B.; Behler, J. Neural Network Potentials for Metals and Oxides-First Applications to Copper Clusters at Zinc Oxide Phys. Status Solidi B 2012, 10.1002/pssb.201248370
    • (2012) Phys. Status Solidi B
    • Artrith, N.1    Hiller, B.2    Behler, J.3
  • 68
    • 77954915385 scopus 로고    scopus 로고
    • Graphite-Diamond Phase Coexistence Study Employing a Neural-Network Mapping of the Ab Initio Potential Energy Surface
    • Khaliullin, R. Z.; Eshet, H.; Kühne, T. D.; Behler, J.; Parrinello, M. Graphite-Diamond Phase Coexistence Study Employing a Neural-Network Mapping of the Ab Initio Potential Energy Surface Phys. Rev. B 2010, 81, 100103
    • (2010) Phys. Rev. B , vol.81 , pp. 100103
    • Khaliullin, R.Z.1    Eshet, H.2    Kühne, T.D.3    Behler, J.4    Parrinello, M.5
  • 70
    • 84861125804 scopus 로고    scopus 로고
    • Neural Network Interatomic Potential for the Phase Change Material GeTe
    • Sosso, G.; Miceli, G.; Caravati, S.; Behler, J.; Bernasconi, M. Neural Network Interatomic Potential for the Phase Change Material GeTe Phys. Rev. B 2012, 85, 174103
    • (2012) Phys. Rev. B , vol.85 , pp. 174103
    • Sosso, G.1    Miceli, G.2    Caravati, S.3    Behler, J.4    Bernasconi, M.5
  • 71
    • 4043164887 scopus 로고    scopus 로고
    • Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections
    • Grimme, S. Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections J. Comput. Chem. 2004, 25, 1463-1473
    • (2004) J. Comput. Chem. , vol.25 , pp. 1463-1473
    • Grimme, S.1
  • 72
    • 33750559983 scopus 로고    scopus 로고
    • Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction
    • Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction J. Comput. Chem. 2006, 27, 1787-1799
    • (2006) J. Comput. Chem. , vol.27 , pp. 1787-1799
    • Grimme, S.1
  • 74
    • 0001616080 scopus 로고    scopus 로고
    • Replica-Exchange Molecular Dynamics Method for Protein Folding
    • Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for Protein Folding Chem. Phys. Lett. 1999, 314, 141-151
    • (1999) Chem. Phys. Lett. , vol.314 , pp. 141-151
    • Sugita, Y.1    Okamoto, Y.2
  • 75
    • 69349104215 scopus 로고    scopus 로고
    • TiREX: Replica-Exchange Molecular Dynamics Using TINKER
    • Penev, E. S.; Lampoudi, S.; Shea, J. E. TiREX: Replica-Exchange Molecular Dynamics Using TINKER Comput. Phys. Commun. 2009, 180, 2013-2019
    • (2009) Comput. Phys. Commun. , vol.180 , pp. 2013-2019
    • Penev, E.S.1    Lampoudi, S.2    Shea, J.E.3
  • 77
    • 33846086933 scopus 로고    scopus 로고
    • Canonical Sampling Through Velocity Rescaling
    • Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling Through Velocity Rescaling J. Chem. Phys. 2007, 126, 014101
    • (2007) J. Chem. Phys. , vol.126 , pp. 014101
    • Bussi, G.1    Donadio, D.2    Parrinello, M.3
  • 79
    • 33645518656 scopus 로고    scopus 로고
    • Neural Network Models of Potential Energy Surfaces: Prototypical Examples
    • Witkoskie, J. B.; Doren, D. J. Neural Network Models of Potential Energy Surfaces: Prototypical Examples J. Chem. Theory Comput. 2005, 1, 14-23
    • (2005) J. Chem. Theory Comput. , vol.1 , pp. 14-23
    • Witkoskie, J.B.1    Doren, D.J.2
  • 80
    • 0025536870 scopus 로고
    • Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights
    • San Diego, CA
    • Nguyen, D.; Widrow, B. Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights. In IEEE First International Joint Conference on Neural Networks, San Diego, CA, 1990; pp 21-26.
    • (1990) IEEE First International Joint Conference on Neural Networks , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 81
    • 36449006558 scopus 로고
    • Molecular-Potential Energy Surfaces by Interpolation
    • Ischtwan, J.; Collins, M. A. Molecular-Potential Energy Surfaces By Interpolation J. Chem. Phys. 1994, 100, 8080-8088
    • (1994) J. Chem. Phys. , vol.100 , pp. 8080-8088
    • Ischtwan, J.1    Collins, M.A.2
  • 82
    • 80055042187 scopus 로고    scopus 로고
    • Benchmark Structures and Binding Energies of Small Water Clusters with Anharmonicity Corrections
    • Temelso, B.; Archer, K. A.; Shields, G. C. Benchmark Structures and Binding Energies of Small Water Clusters with Anharmonicity Corrections J. Phys. Chem. A 2011, 115, 12034-12046
    • (2011) J. Phys. Chem. A , vol.115 , pp. 12034-12046
    • Temelso, B.1    Archer, K.A.2    Shields, G.C.3
  • 83
    • 33646887390 scopus 로고
    • On the Limited Memory BFGS Method for Large-Scale Optimization
    • Liu, D. C.; Nocedal, J. On the Limited Memory BFGS Method for Large-Scale Optimization Math. Program. 1989, 45, 503-528
    • (1989) Math. Program. , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 84
    • 56849120545 scopus 로고    scopus 로고
    • On the Accuracy of Density-Functional Theory Exchange-Correlation Functionals for H Bonds in Small Water Clusters. II. The Water Hexamer and van der Waals Interactions
    • Santra, B.; Michaelides, A.; Fuchs, M.; Tkatchenko, A.; Filippi, C.; Scheffler, M. On the Accuracy of Density-Functional Theory Exchange-Correlation Functionals for H Bonds in Small Water Clusters. II. The Water Hexamer and van der Waals Interactions J. Chem. Phys. 2008, 129, 194111
    • (2008) J. Chem. Phys. , vol.129 , pp. 194111
    • Santra, B.1    Michaelides, A.2    Fuchs, M.3    Tkatchenko, A.4    Filippi, C.5    Scheffler, M.6
  • 85
    • 67649283311 scopus 로고    scopus 로고
    • Improvement in Hydrogen Bond Description Using van der Waals-Corrected DFT: The Case of Small Water Clusters
    • Silvestrelli, P. L. Improvement in Hydrogen Bond Description Using van der Waals-Corrected DFT: The Case of Small Water Clusters Chem. Phys. Lett. 2009, 475, 285-288
    • (2009) Chem. Phys. Lett. , vol.475 , pp. 285-288
    • Silvestrelli, P.L.1
  • 86
    • 64849103650 scopus 로고    scopus 로고
    • CCSD(T) Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures
    • Bates, D. M.; Tschumper, G. S. CCSD(T) Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures J. Phys. Chem. A 2009, 113, 3555-3559
    • (2009) J. Phys. Chem. A , vol.113 , pp. 3555-3559
    • Bates, D.M.1    Tschumper, G.S.2
  • 87
    • 10044242685 scopus 로고    scopus 로고
    • Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional
    • Su, J. T.; Xu, X.; Goddard, W. A. Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional J. Phys. Chem. A 2004, 108, 10518-10526
    • (2004) J. Phys. Chem. A , vol.108 , pp. 10518-10526
    • Su, J.T.1    Xu, X.2    Goddard, W.A.3
  • 88
    • 67249096678 scopus 로고    scopus 로고
    • Development of Generalized Potential-Energy Surfaces Using Many-Body Expansions, Neural Networks, and Moiety Energy Approximations
    • Malshe, M.; Narulkar, R.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Agrawal, P. M.; Komanduri, R. Development of Generalized Potential-Energy Surfaces Using Many-Body Expansions, Neural Networks, and Moiety Energy Approximations J. Chem. Phys. 2009, 130, 184102
    • (2009) J. Chem. Phys. , vol.130 , pp. 184102
    • Malshe, M.1    Narulkar, R.2    Raff, L.M.3    Hagan, M.4    Bukkapatnam, S.5    Agrawal, P.M.6    Komanduri, R.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.