-
3
-
-
80555137399
-
-
Department of Statistics. Berkeley: University of California
-
Breiman, L. (1997). Arcing the edge (Technical report 486). Department of Statistics. Berkeley: University of California.
-
(1997)
Arcing the Edge (Technical Report 486)
-
-
Breiman, L.1
-
4
-
-
14644395930
-
Some infinity theory for predictor ensembles
-
Breiman, L. (2004). Some infinity theory for predictor ensembles. Annals of Statistics, 32(1), 1-11.
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 1-11
-
-
Breiman, L.1
-
5
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T.G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 40(2), 139-158.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-158
-
-
Dietterich, T.G.1
-
8
-
-
0037031029
-
A geometric approach to leveraging weak learners
-
DOI 10.1016/S0304-3975(01)00083-4, PII S0304397501000834
-
Duffy, N., & Helmbold, D. (2002). A geometric approach to leveraging weak learners. Theoretical Computer Science, 284, 67-108. (Pubitemid 34661530)
-
(2002)
Theoretical Computer Science
, vol.284
, Issue.1
, pp. 67-108
-
-
Duffy, N.1
Helmbold, D.2
-
9
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256-285.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
10
-
-
0035371148
-
An adaptive version of the boost-by-majority algorithm
-
Freund, Y. (2001). An adaptive version of the boost-by-majority algorithm. Machine Learning, 43(3), 293-318.
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 293-318
-
-
Freund, Y.1
-
12
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Freund, Y. & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
13
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2), 337-407. (Pubitemid 33227445)
-
(2000)
Annals of Statistics
, vol.28
, Issue.2 SPI.
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
14
-
-
24644494284
-
Boosting in the presence of noise
-
DOI 10.1016/j.jcss.2004.10.015, PII S0022000004001382
-
Kalai, A., & Servedio, R. (2005). Boosting in the presence of noise. Journal of Computer & System Sciences, 71(3), 266-290. (Pubitemid 41278181)
-
(2005)
Journal of Computer and System Sciences
, vol.71
, Issue.3
, pp. 266-290
-
-
Kalai, A.T.1
Servedio, R.A.2
-
17
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
DOI 10.1214/aos/1079120129
-
Lugosi, G., & Vayatis, N. (2004). On the bayes-risk consistency of regularized boosting methods. Annals of Statistics, 32(1), 30-55. (Pubitemid 41449304)
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
19
-
-
2542488393
-
The consistency of greedy algorithms for classification
-
Mannor, S., Meir, R., & Zhang, T. (2003). The consistency of greedy algorithms for classification. Journal of Machine Learning Research, 4, 713-741.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 713-741
-
-
Mannor, S.1
Meir, R.2
Zhang, T.3
-
21
-
-
84898978212
-
Boosting algorithms as gradient descent
-
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent. In Advances in neural information processing systems (NIPS) (pp. 512-518).
-
(1999)
Advances in Neural Information Processing Systems (NIPS)
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
22
-
-
0342502195
-
Soft margins for AdaBoost
-
DOI 10.1023/A:1007618119488
-
Ratsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42(3), 287-320. (Pubitemid 32188795)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.-R.3
-
23
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
DOI 10.1023/A:1007614523901
-
Schapire, R., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37, 297-336. (Pubitemid 32210620)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
24
-
-
2542488394
-
Smooth boosting and learning with malicious noise
-
Servedio, R. (2003). Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4, 633-648.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 633-648
-
-
Servedio, R.1
-
25
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics, 32(1), 56-85.
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 56-85
-
-
Zhang, T.1
-
26
-
-
26444493144
-
Boosting with early stopping: Convergence and consistency
-
DOI 10.1214/009053605000000255
-
Zhang, T., & Yu, B. (2005). Boosting with early stopping: Convergence and consistency. Annals of Statistics, 33(4), 1538-1579. (Pubitemid 41423980)
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1538-1579
-
-
Zhang, T.1
Yu, B.2
|