메뉴 건너뛰기




Volumn 11, Issue 2, 2015, Pages 121-134

Development and application of deep belief networks for predicting railway operation disruptions

Author keywords

Deep belief networks; Discrete event diagnostic data; Door system; Multilayer perceptron; Railway operations disruptions

Indexed keywords

BENCHMARKING; FLEET OPERATIONS; GENETIC ALGORITHMS; RAILROAD TRANSPORTATION; RAILS;

EID: 84930251679     PISSN: 09731318     EISSN: 29938341     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (5)

References (24)
  • 1
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine, A.K.S., D. Lin, and D. Banjevic. A Review on Machinery Diagnostics and Prognostics Implementing Condition-based Maintenance. Mechanical Systems and Signal Processing. 2006; 20(7): 1483-1510.
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 2
    • 73849124314 scopus 로고    scopus 로고
    • Neural network models to anticipate failures of airport ground transportation vehicle doors
    • Smith, A. E., D.W. Coit, and L. Yun-Chia. Neural Network Models to Anticipate Failures of Airport Ground Transportation Vehicle Doors. Automation Science and Engineering, IEEE Transactions on. 2010; 7(1):183-188.
    • (2010) Automation Science and Engineering IEEE Transactions on , vol.7 , Issue.1 , pp. 183-188
    • Smith, A.E.1    Coit, D.W.2    Yun-Chia, L.3
  • 4
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science. 2006; 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 7
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • July
    • Tamilselvan, P., and P. Wang. Failure Diagnosis using Deep Belief Learning based Health State Classification. Reliability Engineering and System Safety, July 2013; 115:124-135.
    • (2013) Reliability Engineering and System Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 8
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using teager kaiser energy operator and deep belief networks
    • Tran, V.T., F. AlThobiani, and A. Ball. An Approach to Fault Diagnosis of Reciprocating Compressor Valves using Teager Kaiser Energy Operator and Deep Belief Networks. Expert Systems with Applications. 2014; 41(9):4113-4122. Available from: http://www. sciencedirect.com/science/article/pii/S0957417413010014.
    • (2014) Expert Systems with Applications , vol.41 , Issue.9 , pp. 4113-4122
    • Tran, V.T.1    Althobiani, F.2    Ball, A.3
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., S. Osindero, and Y. W. Teh. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation. 2006; 18(7):1527-1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 11
    • 0001578518 scopus 로고
    • A learning algorithm for boltzmann machines
    • Ackley, D. H., G. E. Hinton, and T. J. Sejnowski. A Learning Algorithm for Boltzmann Machines. Cognitive Science. 1985; 9(1):147-169.
    • (1985) Cognitive Science , vol.9 , Issue.1 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 12
    • 71149118574 scopus 로고    scopus 로고
    • Factored conditional restricted boltzmann machines for modeling motion style
    • June. Omnipress, Montreal, Quebec
    • Taylor, G.W., and G. E. Hinton. Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style. Proc. 26th International Conference on Machine Learning, June 2009, pp 1025-1032. Omnipress, Montreal, Quebec.
    • (2009) Proc. 26th International Conference on Machine Learning , pp. 1025-1032
    • Taylor, G.W.1    Hinton, G.E.2
  • 15
    • 84878930351 scopus 로고    scopus 로고
    • Predicting time series of railway speed restrictions with time-dependent machine learning techniques
    • Fink, O., E. Zio, and U. Weidmann. Predicting Time Series of Railway Speed Restrictions with Time-dependent Machine Learning Techniques. Expert Systems with Applications.2013; 40(15):6033-6040. Available from: http://www.sciencedirect.com/science /article/pii/S0957417413002868.
    • (2013) Expert Systems with Applications , vol.40 , Issue.15 , pp. 6033-6040
    • Fink, O.1    Zio, E.2    Weidmann, U.3
  • 17
    • 84891599481 scopus 로고    scopus 로고
    • PrEdicting potential railway operational disruptions with echo state networks. Transportation research Record
    • Fink, O., A. Nash, and U. Weidmann. Predicting Potential Railway Operational Disruptions with Echo State Networks. Transportation Research Record. Journal of the Transportation Research Board. 2013; 2374(1):66-72.
    • (2013) Journal of the Transportation Research Board , vol.2374 , Issue.1 , pp. 66-72
    • Fink, O.1    Nash, A.2    Weidmann, U.3
  • 20
    • 27744480560 scopus 로고    scopus 로고
    • Revisiting squared-error and cross-entropy functions for training neural network classifiers
    • Kline, D., and V. Berardi. Revisiting Squared-Error and Cross-Entropy Functions for Training Neural Network Classifiers. Neural Computing and Applications. 2005; 14(4):310-318.
    • (2005) Neural Computing and Applications , vol.14 , Issue.4 , pp. 310-318
    • Kline, D.1    Berardi, V.2
  • 21
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik, K., M. Stinchcombe, and H. White. Multilayer Feed-Forward Networks are Universal Approximators. Neural Networks. 1989; 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann;
    • Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann; 1995. p. 1137-1145.
    • (1995) International Joint Conference on Artificial Intelligence (IJCAI) , pp. 1137-1145
    • Kohavi, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.