메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages 151-156

A deep learning method using SDA combined with dropout for bearing fault diagnosis

Author keywords

Bearing; Deep learning; Dropout; Fault diagnosis; Stacked denoising autoencoder

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DEEP LEARNING; FAULT DETECTION; ROLLER BEARINGS;

EID: 84954206695     PISSN: 23450533     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (12)
  • 1
    • 84907486966 scopus 로고    scopus 로고
    • Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
    • Ben Ali J., Fnaiech N., Saidi L., et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Applied Acoustics, Vol. 89, 2015, p. 16-27.
    • (2015) Applied Acoustics , vol.89 , pp. 16-27
    • Ben, A.J.1    Fnaiech, N.2    Saidi, L.3
  • 2
    • 84922898022 scopus 로고    scopus 로고
    • Study on hankel matrix-based SVD and its application in rolling element bearing fault diagnosis
    • Jiang H., Chen J., Dong G., et al. Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis. Mechanical Systems and Signal Processing, Vols. 52-53, 2015, p. 338-359.
    • (2015) Mechanical Systems and Signal Processing , vol.52-53 , pp. 338-359
    • Jiang, H.1    Chen, J.2    Dong, G.3
  • 3
    • 84862824347 scopus 로고    scopus 로고
    • Novel method for rolling element bearing health assessment - A tachometer-less synchronously averaged envelope feature extraction technique
    • Siegel D., Al-Atat H., Shauche V., et al. Novel method for rolling element bearing health assessment - A tachometer-less synchronously averaged envelope feature extraction technique. Mechanical Systems and Signal Processing, Vol. 29, 2012, p. 362-376.
    • (2012) Mechanical Systems and Signal Processing , vol.29 , pp. 362-376
    • Siegel, D.1    Al-Atat, H.2    Shauche, V.3
  • 4
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G. E., Salakhutdinov R. R. Reducing the dimensionality of data with neural networks. Science, Vol. 313, Issue 5786, 2006, p. 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 5
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P., Larochelle H., Lajoie I., et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, Vol. 11, 2010, p. 3371-3408.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.