-
1
-
-
84907486966
-
Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
-
Ben Ali J., Fnaiech N., Saidi L., et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Applied Acoustics, Vol. 89, 2015, p. 16-27.
-
(2015)
Applied Acoustics
, vol.89
, pp. 16-27
-
-
Ben, A.J.1
Fnaiech, N.2
Saidi, L.3
-
2
-
-
84922898022
-
Study on hankel matrix-based SVD and its application in rolling element bearing fault diagnosis
-
Jiang H., Chen J., Dong G., et al. Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis. Mechanical Systems and Signal Processing, Vols. 52-53, 2015, p. 338-359.
-
(2015)
Mechanical Systems and Signal Processing
, vol.52-53
, pp. 338-359
-
-
Jiang, H.1
Chen, J.2
Dong, G.3
-
3
-
-
84862824347
-
Novel method for rolling element bearing health assessment - A tachometer-less synchronously averaged envelope feature extraction technique
-
Siegel D., Al-Atat H., Shauche V., et al. Novel method for rolling element bearing health assessment - A tachometer-less synchronously averaged envelope feature extraction technique. Mechanical Systems and Signal Processing, Vol. 29, 2012, p. 362-376.
-
(2012)
Mechanical Systems and Signal Processing
, vol.29
, pp. 362-376
-
-
Siegel, D.1
Al-Atat, H.2
Shauche, V.3
-
4
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G. E., Salakhutdinov R. R. Reducing the dimensionality of data with neural networks. Science, Vol. 313, Issue 5786, 2006, p. 504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
5
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent P., Larochelle H., Lajoie I., et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, Vol. 11, 2010, p. 3371-3408.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
-
7
-
-
84890482429
-
Extracting deep bottleneck features using stacked auto-encoders
-
Gehring J., Miao Y., Metze F., et al. Extracting deep bottleneck features using stacked auto-encoders. IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, p. 3377-3381.
-
(2013)
IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 3377-3381
-
-
Gehring, J.1
Miao, Y.2
Metze, F.3
-
9
-
-
84905284235
-
Robust feature learning by stacked autoencoder with maximum correntropy criterion
-
Qi Y., Wang Y., Zheng X., et al. Robust feature learning by stacked autoencoder with maximum correntropy criterion. IEEE International Conference on Acoustics, Speech and Signal Processing, 2014, p. 6716-6720.
-
(2014)
IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 6716-6720
-
-
Qi, Y.1
Wang, Y.2
Zheng, X.3
-
10
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N., Hinton G., Krizhevsky A., et al. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, Vol. 15, 2014, p. 1929-1958.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
-
11
-
-
84890527827
-
Improving deep neural networks for LVCSR using rectified linear units and dropout
-
Dahl G. E., Sainath T. N., Hinton G. E. Improving deep neural networks for LVCSR using rectified linear units and dropout. IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, p. 8610-8613.
-
(2013)
IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 8610-8613
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
|