메뉴 건너뛰기




Volumn 36, Issue 5, 2015, Pages 1147-1154

Fault detection and self-learning identification based on PCA-PDBNs

Author keywords

Deep belief network; Fault detection; Particle swarm optimization; Principal component analysis (PCA); Self learning identification

Indexed keywords

BAYESIAN NETWORKS; COMPLEX NETWORKS; DEEP LEARNING; LEARNING SYSTEMS; PARTICLE SWARM OPTIMIZATION (PSO); PRINCIPAL COMPONENT ANALYSIS; SWARM INTELLIGENCE;

EID: 84930976790     PISSN: 02543087     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (10)

References (24)
  • 1
    • 0032825185 scopus 로고    scopus 로고
    • PCA-SDG based process monitoring and fault diagnosis
    • VEDAM H, VENKATASUBRAMANIAN V. PCA-SDG based process monitoring and fault diagnosis [J]. Control Engineering Practice, 1999, 7(7): 903-917.
    • (1999) Control Engineering Practice , vol.7 , Issue.7 , pp. 903-917
    • Vedam, H.1    Venkatasubramanian, V.2
  • 2
    • 84924340064 scopus 로고    scopus 로고
    • Fault detection of batch processes based on MICA optimized with PSO
    • GAO X J, CUI N, ZHANG Y CH, et al. Fault detection of batch processes based on MICA optimized with PSO [J]. Chinese Journal of Scientific Instrument, 2015, 36(1): 152-159.
    • (2015) Chinese Journal of Scientific Instrument , vol.36 , Issue.1 , pp. 152-159
    • Gao, X.J.1    Cui, N.2    Zhang, Y.C.3
  • 3
    • 84929723071 scopus 로고    scopus 로고
    • Research of maglev linear motor fault detection based on wavelet
    • RONG SH W. Research of maglev linear motor fault detection based on wavelet [J]. Electronic Measurement Technology, 2014, 37(11): 109-112.
    • (2014) Electronic Measurement Technology , vol.37 , Issue.11 , pp. 109-112
    • Rong, S.W.1
  • 4
    • 84930983646 scopus 로고    scopus 로고
    • Simulation of water monitoring diagnostic system based on fault tree
    • CHEN L. Simulation of water monitoring diagnostic system based on fault tree [J]. Foreign Electronic Measurement Technology, 2014, 33(12): 35-39.
    • (2014) Foreign Electronic Measurement Technology , vol.33 , Issue.12 , pp. 35-39
    • Chen, L.1
  • 5
    • 71349083204 scopus 로고    scopus 로고
    • Optimal MLP neural network classifier for fault detection of three phase induction motor
    • GHATE V N, DUDUL S V. Optimal MLP neural network classifier for fault detection of three phase induction motor [J]. Expert Systems with Application, 2010, 37(4): 3468-3481.
    • (2010) Expert Systems with Application , vol.37 , Issue.4 , pp. 3468-3481
    • Ghate, V.N.1    Dudul, S.V.2
  • 6
    • 84921651978 scopus 로고    scopus 로고
    • Nonlinear process fault detection method under noise environment using KPCA and MVU
    • CHEN R Q. Nonlinear process fault detection method under noise environment using KPCA and MVU [J]. Chinese Journal of Scientific Instrument, 2014, 35(12): 2673-2680.
    • (2014) Chinese Journal of Scientific Instrument , vol.35 , Issue.12 , pp. 2673-2680
    • Chen, R.Q.1
  • 7
    • 84928396933 scopus 로고    scopus 로고
    • Research of fault diagnosis optimization of multi-bus ATS based on genetic algorithm-support vector machine algorithm
    • SONG D D, MA Y Q, LIN H J. Research of fault diagnosis optimization of multi-bus ATS based on genetic algorithm-support vector machine algorithm [J]. Journal of Eletronic Measurement and Instrumentation, 2013, 27(2): 162-166.
    • (2013) Journal of Eletronic Measurement and Instrumentation , vol.27 , Issue.2 , pp. 162-166
    • Song, D.D.1    Ma, Y.Q.2    Lin, H.J.3
  • 9
    • 84930985542 scopus 로고    scopus 로고
    • Point process models embedded with deep belief networks for spoting keywords
    • LU J, ZHANG Q, YANG J AN, et al. Point process models embedded with deep belief networks for spoting keywords [J]. Journal of Signal Processing, 2013, 29(7): 865-872.
    • (2013) Journal of Signal Processing , vol.29 , Issue.7 , pp. 865-872
    • Lu, J.1    Zhang, Q.2    Yang, J.A.3
  • 12
    • 84930973328 scopus 로고    scopus 로고
    • Rotating machinery fault diagnosis based on BP neural network with adaptive periodic mutation particle swarm optimization
    • YAO J, LI H W. Rotating machinery fault diagnosis based on BP neural network with adaptive periodic mutation particle swarm optimization [J]. Computer Measurement & control, 2013, 21(10): 2624-2626.
    • (2013) Computer Measurement & Control , vol.21 , Issue.10 , pp. 2624-2626
    • Yao, J.1    Li, H.W.2
  • 13
    • 84930980483 scopus 로고    scopus 로고
    • Neural network training based on object-oriented adaptive particle swarm optimization
    • XU L H, LING W X, XIONG L Q. Neural network training based on object-oriented adaptive particle swarm optimization [J]. Application Research of Computers, 2009, 26(1): 111-113.
    • (2009) Application Research of Computers , vol.26 , Issue.1 , pp. 111-113
    • Xu, L.H.1    Ling, W.X.2    Xiong, L.Q.3
  • 14
    • 84898442261 scopus 로고    scopus 로고
    • Study on cyberspace situation awareness modeling method based on deep learning
    • ZHOU CH J, SI ZH Y, XING J G, et al. Study on cyberspace situation awareness modeling method based on deep learning [J]. Journal of Northeast Agricultural University, 2013, 44(5): 144-149.
    • (2013) Journal of Northeast Agricultural University , vol.44 , Issue.5 , pp. 144-149
    • Zhou, C.J.1    Si, Z.Y.2    Xing, J.G.3
  • 16
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted bolt-zmann machines
    • HINTON G E. A practical guide to training restricted bolt-zmann machines [R]. Report of Momentum, 2010, 9(1): 1-20.
    • (2010) Report of Momentum , vol.9 , Issue.1 , pp. 1-20
    • Hinton, G.E.1
  • 17
    • 84877280095 scopus 로고    scopus 로고
    • Marginal fisher feature extraction algorithm based on deep learning
    • SUN ZH J, XUE L, XU Y M. Marginal fisher feature extraction algorithm based on deep learning [J]. Journal of Electronics & Information Technology, 2013, 35(4): 805-811.
    • (2013) Journal of Electronics & Information Technology , vol.35 , Issue.4 , pp. 805-811
    • Sun, Z.J.1    Xue, L.2    Xu, Y.M.3
  • 19
    • 84930972423 scopus 로고    scopus 로고
    • Cooperative neural network learning algorithm based on particle swarm optimization and BP neural network
    • JIANG L, WANG AI P. Cooperative neural network learning algorithm based on particle swarm optimization and BP neural network [J]. Computer Application and software, 2013, 30(9): 19-20.
    • (2013) Computer Application and software , vol.30 , Issue.9 , pp. 19-20
    • Jiang, L.1    Wang, A.P.2
  • 20
    • 33750219970 scopus 로고    scopus 로고
    • Study on optimization of SVR parameters selection based on PSO
    • XIONG W L, XU B G. Study on optimization of SVR parameters selection based on PSO [J]. Journal of System Simulation, 2006, 18(9): 2442-2445.
    • (2006) Journal of System Simulation , vol.18 , Issue.9 , pp. 2442-2445
    • Xiong, W.L.1    Xu, B.G.2
  • 22
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • HINTON G E, OSINDERO S. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18: 1528-1554.
    • (2006) Neural Computation , vol.18 , pp. 1528-1554
    • Hinton, G.E.1    Osindero, S.2
  • 23
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • DOWNS J J, VOGEL E F. A plant-wide industrial process control problem [J]. Computers and Chemical Engineering, 1993, 17(3): 245-255.
    • (1993) Computers and Chemical Engineering , vol.17 , Issue.3 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 24
    • 65349170020 scopus 로고    scopus 로고
    • New monitoring method for dynamic non-Gaussian process
    • WANG P L, YAN W J. New monitoring method for dynamic non-Gaussian process [J]. Chinese Journal of Scientific Instrument, 2009, 30(3): 471-476.
    • (2009) Chinese Journal of Scientific Instrument , vol.30 , Issue.3 , pp. 471-476
    • Wang, P.L.1    Yan, W.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.