메뉴 건너뛰기




Volumn 36, Issue 6, 2015, Pages 1267-1274

Research on deep belief network layer tendency and its application into identifying fault images of aerial images

Author keywords

Automated inspection; Deep belief network; Fault identification; Layer tendency; NDSR

Indexed keywords

ANTENNAS; COMPUTATIONAL COMPLEXITY; ELECTRIC LINES; INFORMATION THEORY; INSPECTION; NETWORK LAYERS; NORMAL DISTRIBUTION;

EID: 84938095930     PISSN: 02543087     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (12)

References (20)
  • 1
    • 84878750888 scopus 로고    scopus 로고
    • The comparative research of detecting high-voltage transmission wire damage, broken strands faults detection methods
    • SUN F, CHEN M Y, LUO T, et al. The comparative research of detecting high-voltage transmission wire damage, broken strands faults detection methods [J]. Microcomputer Information, 2010, 26 (7): 132-134.
    • (2010) Microcomputer Information , vol.26 , Issue.7 , pp. 132-134
    • Sun, F.1    Chen, M.Y.2    Luo, T.3
  • 2
    • 84871074698 scopus 로고    scopus 로고
    • Design and application of air-borne optoelectronic stabilized pod systems for power line inspection applied in cold areas
    • XU J K, ZHANG L ZH, JIN J CH, et al. Design and application of air-borne optoelectronic stabilized pod systems for power line inspection applied in cold areas [J]. Proceedings of the CSEE, 2012, 32 (31): 200-208.
    • (2012) Proceedings of the CSEE , vol.32 , Issue.31 , pp. 200-208
    • Xu, J.K.1    Zhang, L.Z.2    Jin, J.C.3
  • 3
    • 84938086953 scopus 로고    scopus 로고
    • Intelligent line-tracking car based on STM32
    • ZHANG K, LI SH G, ZHU X L, et al. Intelligent line-tracking car based on STM32 [J]. Electronic Measurement Technology, 2012, 35 (2): 105-107.
    • (2012) Electronic Measurement Technology , vol.35 , Issue.2 , pp. 105-107
    • Zhang, K.1    Li, S.G.2    Zhu, X.L.3
  • 4
    • 80054705036 scopus 로고    scopus 로고
    • Research on obstacle recognition based on vision for deicing robot on high voltage transmission line
    • CAO W M, WANG Y N, YIN F, et al. Research on obstacle recognition based on vision for deicing robot on high voltage transmission line [J]. Chinese Journal of Scientific Instrument, 2011, 32 (9): 2049-2056.
    • (2011) Chinese Journal of Scientific Instrument , vol.32 , Issue.9 , pp. 2049-2056
    • Cao, W.M.1    Wang, Y.N.2    Yin, F.3
  • 5
    • 84883878274 scopus 로고    scopus 로고
    • Research of power transmission line equipments recognition method based on UAV
    • HE S Y, LIU G, WANG L, et al. Research of power transmission line equipments recognition method based on UAV [J]. Infrared and Laser Engineering, 2013, 42 (7): 1940-1944.
    • (2013) Infrared and Laser Engineering , vol.42 , Issue.7 , pp. 1940-1944
    • He, S.Y.1    Liu, G.2    Wang, L.3
  • 6
    • 84901284444 scopus 로고    scopus 로고
    • The research of application mode of unmanned aircraft patrol in UHV transmission lines
    • LI Y, GE X, HOU X L. The research of application mode of unmanned aircraft patrol in UHV transmission lines [J]. Applied Mechanics and Materials, 2014: 989-992.
    • (2014) Applied Mechanics and Materials , pp. 989-992
    • Li, Y.1    Ge, X.2    Hou, X.L.3
  • 7
    • 58249090237 scopus 로고    scopus 로고
    • Scheme and key technologies of wireless image transmission system for micro unmanned air vehicles
    • GAO ZH, DENG J H, SUN J, et al. Scheme and key technologies of wireless image transmission system for micro unmanned air vehicles [J]. Transactions of Beijing Institute of Technology, 2008, 28 (12): 1078-1082.
    • (2008) Transactions of Beijing Institute of Technology , vol.28 , Issue.12 , pp. 1078-1082
    • Gao, Z.1    Deng, J.H.2    Sun, J.3
  • 8
    • 84908043022 scopus 로고    scopus 로고
    • Defect recognition for radiographic image based on deep learning network
    • YU Y W, YIN G F, YIN Y, et al. Defect recognition for radiographic image based on deep learning network [J]. Chinese Journal of Scientific Instrument, 2014, 35 (9): 2012-2019.
    • (2014) Chinese Journal of Scientific Instrument , vol.35 , Issue.9 , pp. 2012-2019
    • Yu, Y.W.1    Yin, G.F.2    Yin, Y.3
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • HINTON G E, OSINDERO S, TEH Y-W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18 (7): 1527-1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 10
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • Canada, ICML
    • TIELEMAN T. Training restricted Boltzmann machines using approximations to the likelihood gradient [C]. Proceedings of the 25th International Conference on Machine Learning, Canada, ICML, 2008: 1064-1071.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 1064-1071
    • Tieleman, T.1
  • 12
    • 84894104920 scopus 로고    scopus 로고
    • Fuzzy deep belief networks for semi-supervised sentiment classification
    • ZHOU SH S, CHEN Q C, WANG X L. Fuzzy deep belief networks for semi-supervised sentiment classification [J]. Neurocomputing, 2014, 131: 312-322.
    • (2014) Neurocomputing , vol.131 , pp. 312-322
    • Zhou, S.S.1    Chen, Q.C.2    Wang, X.L.3
  • 13
    • 84938102594 scopus 로고    scopus 로고
    • Research of deep learning neural networks Applications in speech recognition
    • Guangzhou: South China University of Technology
    • CHEN SH. Research of deep learning neural networks Applications in speech recognition [D]. Guangzhou: South China University of Technology, 2013.
    • (2013)
    • Chen, S.1
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • HINTON G E. SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313 (5786): 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 84855586429 scopus 로고    scopus 로고
    • Low resolution face recognition with pose variations using deep belief networks
    • Shanghai
    • LIN M ZH, FAN X. Low resolution face recognition with pose variations using deep belief networks [C]. 2011 4th International Congress on Image and Signal Processing, Shanghai, 2011: 1522-1526.
    • (2011) 2011 4th International Congress on Image and Signal Processing , pp. 1522-1526
    • Lin, M.Z.1    Fan, X.2
  • 16
    • 77949524387 scopus 로고    scopus 로고
    • Visualizing higher-layer features of a deep network
    • Report 1341, University of Montreal
    • ERHAN D, BENGIO Y, COURVILLE A, et al. Visualizing higher-layer features of a deep network [R]. Technical Report 1341, University of Montreal, 2009.
    • (2009)
    • Erhan, D.1    Bengio, Y.2    Courville, A.3
  • 18
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • DAHL G E, DONG Y, LI D, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition [J]. IEEE Transactions on Audio, Speech and Language Processing, 2012, 20 (1): 30-42.
    • (2012) IEEE Transactions on Audio, Speech and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Dong, Y.2    Li, D.3
  • 19
    • 84865604539 scopus 로고    scopus 로고
    • Improving convergence of restricted Boltzmann machines via a learning adaptive step size
    • LOPE N, RIBEIRO B. Improving convergence of restricted Boltzmann machines via a learning adaptive step size [J]. Lecture Notes in Computer Science, 2012, 7441: 511-518.
    • (2012) Lecture Notes in Computer Science , vol.7441 , pp. 511-518
    • Lope, N.1    Ribeiro, B.2
  • 20
    • 81355133067 scopus 로고    scopus 로고
    • Fault diagnosis for refrigeration systems based on principal component analysis and support vector machine
    • HAN H, GU B, REN N. Fault diagnosis for refrigeration systems based on principal component analysis and support vector machine [J]. Journal of Shanghai Jiao Tong University, 2011, 45 (9): 1355-1361, 1373.
    • (2011) Journal of Shanghai Jiao Tong University , vol.45 , Issue.9
    • Han, H.1    Gu, B.2    Ren, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.