메뉴 건너뛰기




Volumn , Issue , 2016, Pages 745-748

A hierarchical deep neural network for fault diagnosis on Tennessee-Eastman process

Author keywords

Chemical engineering; Deep neural network; Fault diagnosis; Tennessee Eastman process

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHEMICAL ENGINEERING; FAILURE ANALYSIS; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 84969706199     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2015.208     Document Type: Conference Paper
Times cited : (59)

References (7)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai. Foundations and trends R
    • Yoshua Bengio. Learning deep architectures for ai. Foundations and trends R . in Machine Learning, 2(1):1-127, 2009
    • (2009) Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 2
    • 77957925437 scopus 로고    scopus 로고
    • Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-eastman process
    • Reza Eslamloueyan. Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the tennessee-eastman process. Applied soft computing, 11(1):1407-1415, 2011
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 1407-1415
    • Eslamloueyan, R.1
  • 3
    • 0027333737 scopus 로고
    • An approach to fault diagnosis of chemical processes via neural networks
    • JY Fan, M Nikolaou, and Ralph E White. An approach to fault diagnosis of chemical processes via neural networks. AIChE Journal, 39(1):82-88, 1993
    • (1993) AIChE Journal , vol.39 , Issue.1 , pp. 82-88
    • Fan, J.Y.1    Nikolaou, M.2    White, R.E.3
  • 4
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Geoffrey E.H. Training products of experts by minimizing contrastive divergence. Neural computation, 14(8):1771-1800, 2002
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Geoffrey, E.H.1
  • 5
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 6
    • 25844517176 scopus 로고    scopus 로고
    • Knowledge incorporated support vector machines to detect faults in Tennessee eastman process
    • Abhijit Kulkarni, Vaidyanathan K Jayaraman, and Bhaskar D Kulkarni. Knowledge incorporated support vector machines to detect faults in tennessee eastman process. Computers &chemical engineering, 29(10):2128-2133, 2005
    • (2005) Computers &Chemical Engineering , vol.29 , Issue.10 , pp. 2128-2133
    • Kulkarni, A.1    Jayaraman, V.K.2    Kulkarni, B.D.3
  • 7
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Evan L Russell, Leo H Chiang, and Richard D Braatz. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 51(1):81-93, 2000
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , Issue.1 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.