메뉴 건너뛰기




Volumn 27, Issue , 2015, Pages 1710-1722

The early-warning model of equipment chain in gas pipeline based on DNN-HMM

Author keywords

Compressor unit; Deep belief networks; Early warning; Equipment chain; Hidden Markov model

Indexed keywords

BAYESIAN NETWORKS; COMPRESSORS; DEEP NEURAL NETWORKS; HIDDEN MARKOV MODELS; PIPELINES; SYSTEMS ENGINEERING;

EID: 84958163210     PISSN: 18755100     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jngse.2015.10.036     Document Type: Article
Times cited : (34)

References (29)
  • 1
    • 84907352012 scopus 로고    scopus 로고
    • Rotor dynamic response of a centrifugal compressor due to liquid carry over: a case study
    • Al Yahyai M., Mba D. Rotor dynamic response of a centrifugal compressor due to liquid carry over: a case study. Eng. Fail. Anal. 2014, 45:436-448.
    • (2014) Eng. Fail. Anal. , vol.45 , pp. 436-448
    • Al Yahyai, M.1    Mba, D.2
  • 2
    • 0000342467 scopus 로고
    • Statistical inference for probabilistic functions of finite state Markov chains
    • Baum L.E., Petrie T. Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 1966, 1554-1563.
    • (1966) Ann. Math. Stat. , pp. 1554-1563
    • Baum, L.E.1    Petrie, T.2
  • 3
    • 27744505094 scopus 로고    scopus 로고
    • HMMs for diagnostics and prognostics in machining processes
    • Baruah P., Chinnam R.B. HMMs for diagnostics and prognostics in machining processes. Int. J. Prod. Res. 2005, 43(6):1275-1293.
    • (2005) Int. J. Prod. Res. , vol.43 , Issue.6 , pp. 1275-1293
    • Baruah, P.1    Chinnam, R.B.2
  • 4
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1):1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 0037768682 scopus 로고    scopus 로고
    • Continuous restricted Boltzmann machine with an implementable training algorithm
    • Chen H., Murray A.F. Continuous restricted Boltzmann machine with an implementable training algorithm. Vis. Image Signal Process. IEE Proc. IET 2003, 150(3):153-158.
    • (2003) Vis. Image Signal Process. IEE Proc. IET , vol.150 , Issue.3 , pp. 153-158
    • Chen, H.1    Murray, A.F.2
  • 7
    • 79956368060 scopus 로고    scopus 로고
    • Forecasting turbine problems by means of the state space framework
    • Carnero M.C., Pedregal D.J. Forecasting turbine problems by means of the state space framework. J. Loss Prev. Process Ind. 2011, 24(4):432-439.
    • (2011) J. Loss Prev. Process Ind. , vol.24 , Issue.4 , pp. 432-439
    • Carnero, M.C.1    Pedregal, D.J.2
  • 8
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • Dahl G.E., Yu D., Deng L., Acero A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. Audio Speech Lang. Process. IEEE Trans. 2012, 20(1):30-42.
    • (2012) Audio Speech Lang. Process. IEEE Trans. , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 9
    • 84876840567 scopus 로고    scopus 로고
    • EWaSAP: an early warning sign identification approach based on a systemic hazard analysis
    • Dokas I.M., Feehan J., Imran S. EWaSAP: an early warning sign identification approach based on a systemic hazard analysis. Saf. Sci. 2013, 58:11-26.
    • (2013) Saf. Sci. , vol.58 , pp. 11-26
    • Dokas, I.M.1    Feehan, J.2    Imran, S.3
  • 11
    • 80051596307 scopus 로고    scopus 로고
    • Neural network-based symbol recognition using a few labeled samples
    • Fu L., Kara L.B. Neural network-based symbol recognition using a few labeled samples. Comput. Graph. 2011, 35(5):955-966.
    • (2011) Comput. Graph. , vol.35 , Issue.5 , pp. 955-966
    • Fu, L.1    Kara, L.B.2
  • 12
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002, 14(8):1771-1800.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 13
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E., Osindero S., Teh Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 14
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Springer, Berlin Heidelberg
    • Hinton G.E. A practical guide to training restricted boltzmann machines. Neural Networks: Tricks of the Trade 2012, 599-619. Springer, Berlin Heidelberg.
    • (2012) Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.E.1
  • 15
    • 84881292563 scopus 로고    scopus 로고
    • An HMM-based over-sampling technique to improve text classification
    • Iglesias E.L., Vieira A.S., Borrajo L. An HMM-based over-sampling technique to improve text classification. Expert Syst. Appl. 2013, 40(18):7184-7192.
    • (2013) Expert Syst. Appl. , vol.40 , Issue.18 , pp. 7184-7192
    • Iglesias, E.L.1    Vieira, A.S.2    Borrajo, L.3
  • 16
    • 84919884296 scopus 로고    scopus 로고
    • Fault diagnosis of pipeline and pump unit systems using status coupling analysis
    • Kang J., Zhang L., Liang W. Fault diagnosis of pipeline and pump unit systems using status coupling analysis. J. Loss Prev. Process Ind. 2015, 33:70-76.
    • (2015) J. Loss Prev. Process Ind. , vol.33 , pp. 70-76
    • Kang, J.1    Zhang, L.2    Liang, W.3
  • 17
    • 84899568094 scopus 로고    scopus 로고
    • Time series forecasting using a deep belief network with restricted Boltzmann machines
    • Kuremoto T., Kimura S., Kobayashi K., et al. Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 2014, 137:47-56.
    • (2014) Neurocomputing , vol.137 , pp. 47-56
    • Kuremoto, T.1    Kimura, S.2    Kobayashi, K.3
  • 18
    • 84885018698 scopus 로고    scopus 로고
    • Towards adaptive learning with improved convergence of deep belief networks on graphics processing units
    • Lopes N., Ribeiro B. Towards adaptive learning with improved convergence of deep belief networks on graphics processing units. Pattern Recognit. 2014, 47(1):114-127.
    • (2014) Pattern Recognit. , vol.47 , Issue.1 , pp. 114-127
    • Lopes, N.1    Ribeiro, B.2
  • 19
    • 84885603005 scopus 로고    scopus 로고
    • Coupling relations and early-warning for "equipment chain" in long-distance pipeline
    • Liang W., Lu L., Zhang L. Coupling relations and early-warning for "equipment chain" in long-distance pipeline. Mech. Syst. Signal Process. 2013, 41(1):335-347.
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.1 , pp. 335-347
    • Liang, W.1    Lu, L.2    Zhang, L.3
  • 20
    • 79958842816 scopus 로고    scopus 로고
    • Discriminative deep belief networks for visual data classification
    • Liu Y., Zhou S., Chen Q. Discriminative deep belief networks for visual data classification. Pattern Recognit. 2011, 44(10):2287-2296.
    • (2011) Pattern Recognit. , vol.44 , Issue.10 , pp. 2287-2296
    • Liu, Y.1    Zhou, S.2    Chen, Q.3
  • 21
    • 4344686230 scopus 로고    scopus 로고
    • Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery
    • Li Z., Wu Z., He Y., et al. Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery. Mech. Syst. Signal Process. 2005, 19(2):329-339.
    • (2005) Mech. Syst. Signal Process. , vol.19 , Issue.2 , pp. 329-339
    • Li, Z.1    Wu, Z.2    He, Y.3
  • 22
    • 79959840616 scopus 로고    scopus 로고
    • Investigation of full-sequence training of deep belief networks for speech recognition
    • Mohamed A., Yu D., Deng L. Investigation of full-sequence training of deep belief networks for speech recognition. INTERSPEECH 2010, 2846-2849.
    • (2010) INTERSPEECH , pp. 2846-2849
    • Mohamed, A.1    Yu, D.2    Deng, L.3
  • 23
    • 13944267843 scopus 로고    scopus 로고
    • Evolution strategy for gas-turbine fault-diagnoses
    • Ogaji S.O.T., Sampath S., Marinai L., et al. Evolution strategy for gas-turbine fault-diagnoses. Appl. Energy 2005, 81(2):222-230.
    • (2005) Appl. Energy , vol.81 , Issue.2 , pp. 222-230
    • Ogaji, S.O.T.1    Sampath, S.2    Marinai, L.3
  • 24
    • 84894261826 scopus 로고    scopus 로고
    • Data-driven soft sensor development based on deep learning technique
    • Shang C., Yang F., Huang D., Lyu W. Data-driven soft sensor development based on deep learning technique. J. Process Control 2014, 24(3):223-233.
    • (2014) J. Process Control , vol.24 , Issue.3 , pp. 223-233
    • Shang, C.1    Yang, F.2    Huang, D.3    Lyu, W.4
  • 25
    • 41549112810 scopus 로고    scopus 로고
    • Fault diagnosis of an industrial gas turbine prototype using a system identification approach
    • Simani S., Patton R.J. Fault diagnosis of an industrial gas turbine prototype using a system identification approach. Control Eng. Pract. 2008, 16(7):769-786.
    • (2008) Control Eng. Pract. , vol.16 , Issue.7 , pp. 769-786
    • Simani, S.1    Patton, R.J.2
  • 26
    • 84904389479 scopus 로고    scopus 로고
    • Smoothing of HMM parameters for efficient recognition of online handwriting
    • Samanta O., Bhattacharya U., Parui S.K. Smoothing of HMM parameters for efficient recognition of online handwriting. Pattern Recognit. 2014, 47(11):3614-3629.
    • (2014) Pattern Recognit. , vol.47 , Issue.11 , pp. 3614-3629
    • Samanta, O.1    Bhattacharya, U.2    Parui, S.K.3
  • 27
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Tamilselvan P., Wang P. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013, 115:124-135.
    • (2013) Reliab. Eng. Syst. Saf. , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 28
    • 84857642411 scopus 로고    scopus 로고
    • A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
    • Taieb S.B., Bontempi G., Atiya A.F., et al. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39(8):7067-7083.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.8 , pp. 7067-7083
    • Taieb, S.B.1    Bontempi, G.2    Atiya, A.F.3
  • 29
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • Tran V.T., Al Thobiani F., Ball A. An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Syst. Appl. 2014, 41(9):4113-4122.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.9 , pp. 4113-4122
    • Tran, V.T.1    Al Thobiani, F.2    Ball, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.