-
2
-
-
0033673203
-
Mechanism by which metformin reduces glucose production in type 2 diabetes
-
Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000;49:2063-9.
-
(2000)
Diabetes
, vol.49
, pp. 2063-2069
-
-
Hundal, R.S.1
Krssak, M.2
Dufour, S.3
-
3
-
-
79251507286
-
Metformin Induces Rab4 Through AMPK and Modulates GLUT4 Translocation in Skeletal Muscle Cells
-
Lee JO, Lee SK, Jung JH, et al. Metformin Induces Rab4 Through AMPK and Modulates GLUT4 Translocation in Skeletal Muscle Cells. Journal of Cellular Physiology 2011;226:974-81.
-
(2011)
Journal of Cellular Physiology
, vol.226
, pp. 974-981
-
-
Lee, J.O.1
Lee, S.K.2
Jung, J.H.3
-
4
-
-
82455209029
-
Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status
-
Stephenne X, Foretz M, Taleux N, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 2011;54:3101-10.
-
(2011)
Diabetologia
, vol.54
, pp. 3101-3110
-
-
Stephenne, X.1
Foretz, M.2
Taleux, N.3
-
6
-
-
33746592505
-
Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin-Response to Farooki and Schneider
-
Bowker SL, Majumdar SR, Veugelers P, et al. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin-Response to Farooki and Schneider. Diabetes Care 2006;29:1990-1.
-
(2006)
Diabetes Care
, vol.29
, pp. 1990-1991
-
-
Bowker, S.L.1
Majumdar, S.R.2
Veugelers, P.3
-
7
-
-
34748912615
-
Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
-
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer 2007;7:763-77.
-
(2007)
Nature Reviews Cancer
, vol.7
, pp. 763-777
-
-
Menendez, J.A.1
Lupu, R.2
-
8
-
-
70350236538
-
Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission
-
Hirsch HA, Iliopoulos D, Tsichlis PN, et al. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009;69:7507-11.
-
(2009)
Cancer Res
, vol.69
, pp. 7507-7511
-
-
Hirsch, H.A.1
Iliopoulos, D.2
Tsichlis, P.N.3
-
9
-
-
84878561961
-
Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK
-
Storozhuk Y, Hopmans SN, Sanli T, et al. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. British Journal of Cancer 2013;108:2021-32.
-
(2013)
British Journal of Cancer
, vol.108
, pp. 2021-2032
-
-
Storozhuk, Y.1
Hopmans, S.N.2
Sanli, T.3
-
10
-
-
84984937251
-
Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention
-
Pulito C, Sanli T, Rana P, et al. Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention. Metabolites 2013;3:1051-75.
-
(2013)
Metabolites
, vol.3
, pp. 1051-1075
-
-
Pulito, C.1
Sanli, T.2
Rana, P.3
-
11
-
-
84855603512
-
Cellular and molecular mechanisms of metformin: an overview
-
Viollet B, Guigas B, Sanz Garcia N, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012;122:253-70.
-
(2012)
Clin Sci (Lond)
, vol.122
, pp. 253-270
-
-
Viollet, B.1
Guigas, B.2
Sanz Garcia, N.3
-
12
-
-
34248156160
-
Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action
-
Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007;117:1422-31.
-
(2007)
J Clin Invest
, vol.117
, pp. 1422-1431
-
-
Shu, Y.1
Sheardown, S.A.2
Brown, C.3
-
13
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000;348 Pt 3:607-14.
-
(2000)
Biochem J
, vol.348
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
14
-
-
0034614420
-
Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
-
El-Mir MY, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000;275:223-8.
-
(2000)
J Biol Chem
, vol.275
, pp. 223-228
-
-
El-Mir, M.Y.1
Nogueira, V.2
Fontaine, E.3
-
15
-
-
34147152841
-
Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade
-
Sanders MJ, Grondin PO, Hegarty BD, et al. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 2007;403:139-48.
-
(2007)
Biochem J
, vol.403
, pp. 139-148
-
-
Sanders, M.J.1
Grondin, P.O.2
Hegarty, B.D.3
-
16
-
-
34848840368
-
Structural basis for AMP binding to mammalian AMP-activated protein kinase
-
Xiao B, Heath R, Saiu P, et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 2007;449:496-500.
-
(2007)
Nature
, vol.449
, pp. 496-500
-
-
Xiao, B.1
Heath, R.2
Saiu, P.3
-
17
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005;310:1642-6.
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
-
18
-
-
84873608350
-
The LKB1-AMPK Pathway-Friend or Foe in Cancer?
-
Hardie DG. The LKB1-AMPK Pathway-Friend or Foe in Cancer? Cancer Cell 2013;23:131-2.
-
(2013)
Cancer Cell
, vol.23
, pp. 131-132
-
-
Hardie, D.G.1
-
19
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010;11:390-401.
-
(2010)
Cell Metab
, vol.11
, pp. 390-401
-
-
Kalender, A.1
Selvaraj, A.2
Kim, S.Y.3
-
20
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010;120:2355-69.
-
(2010)
J Clin Invest
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hebrard, S.2
Leclerc, J.3
-
21
-
-
35548999608
-
AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner
-
Sun Y, Connors KE, Yang DQ. AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner. Mol Cell Biochem 2007;306:239-45.
-
(2007)
Mol Cell Biochem
, vol.306
, pp. 239-245
-
-
Sun, Y.1
Connors, K.E.2
Yang, D.Q.3
-
22
-
-
5444239709
-
IGF-1 phosphorylates AMPK-alpha subunit in ATM-dependent and LKB1-independent manner
-
Suzuki A, Kusakai G, Kishimoto A, et al. IGF-1 phosphorylates AMPK-alpha subunit in ATM-dependent and LKB1-independent manner. Biochem Biophys Res Commun 2004;324:986-92.
-
(2004)
Biochem Biophys Res Commun
, vol.324
, pp. 986-992
-
-
Suzuki, A.1
Kusakai, G.2
Kishimoto, A.3
-
23
-
-
79952538201
-
Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo
-
Algire C, Amrein L, Bazile M, et al. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene 2011;30:1174-82.
-
(2011)
Oncogene
, vol.30
, pp. 1174-1182
-
-
Algire, C.1
Amrein, L.2
Bazile, M.3
-
24
-
-
38949213019
-
BRCA1 and acetyl-CoA carboxylase: the metabolic syndrome of breast cancer
-
Brunet J, Vazquez-Martin A, Colomer R, et al. BRCA1 and acetyl-CoA carboxylase: the metabolic syndrome of breast cancer. Mol Carcinog 2008;47:157-63.
-
(2008)
Mol Carcinog
, vol.47
, pp. 157-163
-
-
Brunet, J.1
Vazquez-Martin, A.2
Colomer, R.3
-
25
-
-
0030063936
-
Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients
-
Alo' PL, Visca P, Marci A, et al. Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 1996;77:474-82.
-
(1996)
Cancer
, vol.77
, pp. 474-482
-
-
Alo', P.L.1
Visca, P.2
Marci, A.3
-
26
-
-
20144389083
-
Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma
-
Visca P, Sebastiani V, Botti C, et al. Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res 2004;24:4169-73.
-
(2004)
Anticancer Res
, vol.24
, pp. 4169-4173
-
-
Visca, P.1
Sebastiani, V.2
Botti, C.3
-
27
-
-
0742324875
-
Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma
-
Sebastiani V, Visca P, Botti C, et al. Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma. Gynecol Oncol 2004;92:101-5.
-
(2004)
Gynecol Oncol
, vol.92
, pp. 101-105
-
-
Sebastiani, V.1
Visca, P.2
Botti, C.3
-
28
-
-
0033009256
-
Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas
-
Alò PL, Visca P, Trombetta G, et al. Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori 1999;85:35-40.
-
(1999)
Tumori
, vol.85
, pp. 35-40
-
-
Alò, P.L.1
Visca, P.2
Trombetta, G.3
-
29
-
-
0031007392
-
Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival
-
Gansler TS, Hardman W, 3rd, Hunt DA, et al. Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol 1997;28:686-92.
-
(1997)
Hum Pathol
, vol.28
, pp. 686-692
-
-
Gansler, T.S.1
Hardman, W.2
Hunt, D.A.3
-
30
-
-
84892484894
-
Contextual inhibition of fatty acid synthesis by metformin involves glucose-derived acetyl-CoA and cholesterol in pancreatic tumor cells
-
Cantoria MJ, Boros LG, Meuillet EJ. Contextual inhibition of fatty acid synthesis by metformin involves glucose-derived acetyl-CoA and cholesterol in pancreatic tumor cells. Metabolomics 2014;10:91-104.
-
(2014)
Metabolomics
, vol.10
, pp. 91-104
-
-
Cantoria, M.J.1
Boros, L.G.2
Meuillet, E.J.3
-
31
-
-
36348950449
-
Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
-
Dowling RJ, Zakikhani M, Fantus IG, et al. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007;67:10804-12.
-
(2007)
Cancer Res
, vol.67
, pp. 10804-10812
-
-
Dowling, R.J.1
Zakikhani, M.2
Fantus, I.G.3
-
32
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214-26.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
-
33
-
-
11244297916
-
Dysregulation of the TSC-mTOR pathway in human disease
-
Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005;37:19-24.
-
(2005)
Nat Genet
, vol.37
, pp. 19-24
-
-
Inoki, K.1
Corradetti, M.N.2
Guan, K.L.3
-
34
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577-90.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
35
-
-
78649858143
-
AMPK as a therapeutic target in renal cell carcinoma
-
Woodard J, Joshi S, Viollet B, et al. AMPK as a therapeutic target in renal cell carcinoma. Cancer Biol Ther 2010;10:1168-77.
-
(2010)
Cancer Biol Ther
, vol.10
, pp. 1168-1177
-
-
Woodard, J.1
Joshi, S.2
Viollet, B.3
-
36
-
-
84890909727
-
The antidiabetic drug metformin inhibits the proliferation of bladder cancer cells in vitro and in vivo
-
Zhang T, Guo P, Zhang Y, et al. The antidiabetic drug metformin inhibits the proliferation of bladder cancer cells in vitro and in vivo. Int J Mol Sci 2013;14:24603-18.
-
(2013)
Int J Mol Sci
, vol.14
, pp. 24603-24618
-
-
Zhang, T.1
Guo, P.2
Zhang, Y.3
-
37
-
-
84892407145
-
Metformin inhibits skin tumor promotion in overweight and obese mice
-
Checkley LA, Rho O, Angel JM, et al. Metformin inhibits skin tumor promotion in overweight and obese mice. Cancer Prev Res (Phila) 2014;7:54-64.
-
(2014)
Cancer Prev Res (Phila)
, vol.7
, pp. 54-64
-
-
Checkley, L.A.1
Rho, O.2
Angel, J.M.3
-
38
-
-
84891956900
-
Metformin inhibits growth and sensitizes osteosarcoma cell lines to cisplatin through cell cycle modulation
-
Quattrini I, Conti A, Pazzaglia L, et al. Metformin inhibits growth and sensitizes osteosarcoma cell lines to cisplatin through cell cycle modulation. Oncol Rep 2014;31:370-5.
-
(2014)
Oncol Rep
, vol.31
, pp. 370-375
-
-
Quattrini, I.1
Conti, A.2
Pazzaglia, L.3
-
39
-
-
34547114031
-
Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
-
Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007;67:6745-52.
-
(2007)
Cancer Res
, vol.67
, pp. 6745-6752
-
-
Buzzai, M.1
Jones, R.G.2
Amaravadi, R.K.3
-
40
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005;18:283-93.
-
(2005)
Mol Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
Plas, D.R.2
Kubek, S.3
-
41
-
-
0033020147
-
Regulation of p53 function and stability by phosphorylation
-
Ashcroft M, Kubbutat MH, Vousden KH. Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 1999;19:1751-8.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 1751-1758
-
-
Ashcroft, M.1
Kubbutat, M.H.2
Vousden, K.H.3
-
42
-
-
0034710870
-
Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage
-
Chao C, Saito S, Anderson CW, et al. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci U S A 2000;97:11936-41.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 11936-11941
-
-
Chao, C.1
Saito, S.2
Anderson, C.W.3
-
43
-
-
84891382131
-
AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity
-
He G, Zhang YW, Lee JH, et al. AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Mol Cell Biol 2014;34:148-57.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 148-157
-
-
He, G.1
Zhang, Y.W.2
Lee, J.H.3
-
44
-
-
84882266927
-
Metformin Blocks Melanoma Invasion and Metastasis Development in AMPK/p53-Dependent Manner
-
Cerezo M, Tichet M, Abbe P, et al. Metformin Blocks Melanoma Invasion and Metastasis Development in AMPK/p53-Dependent Manner. Mol Cancer Ther 2013;12:1605-15.
-
(2013)
Mol Cancer Ther
, vol.12
, pp. 1605-1615
-
-
Cerezo, M.1
Tichet, M.2
Abbe, P.3
-
45
-
-
84889001940
-
Metformin targets c-MYC oncogene to prevent prostate cancer
-
Akinyeke T, Matsumura S, Wang X, et al. Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis 2013;34:2823-32.
-
(2013)
Carcinogenesis
, vol.34
, pp. 2823-2832
-
-
Akinyeke, T.1
Matsumura, S.2
Wang, X.3
-
46
-
-
84865798995
-
Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC
-
Blandino G, Valerio M, Cioce M, et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 2012;3:865.
-
(2012)
Nat Commun
, vol.3
, pp. 865
-
-
Blandino, G.1
Valerio, M.2
Cioce, M.3
-
47
-
-
84901978778
-
Paradoxic effects of metformin on endothelial cells and angiogenesis
-
Dallaglio K, Bruno A, Cantelmo AR, et al. Paradoxic effects of metformin on endothelial cells and angiogenesis. Carcinogenesis 2014;35:1055-66.
-
(2014)
Carcinogenesis
, vol.35
, pp. 1055-1066
-
-
Dallaglio, K.1
Bruno, A.2
Cantelmo, A.R.3
-
48
-
-
79958756136
-
Promoter-specific effects of metformin on aromatase transcript expression
-
Samarajeewa NU, Ham S, Yang F, et al. Promoter-specific effects of metformin on aromatase transcript expression. Steroids 2011;76:768-71.
-
(2011)
Steroids
, vol.76
, pp. 768-771
-
-
Samarajeewa, N.U.1
Ham, S.2
Yang, F.3
-
49
-
-
77956415337
-
Metformin prevents tobacco carcinogen-induced lung tumorigenesis
-
Memmott RM, Mercado JR, Maier CR, et al. Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res (Phila) 2010;3:1066-76.
-
(2010)
Cancer Prev Res (Phila)
, vol.3
, pp. 1066-1076
-
-
Memmott, R.M.1
Mercado, J.R.2
Maier, C.R.3
-
50
-
-
84872294586
-
Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt
-
Würth R, Pattarozzi A, Gatti M, et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt. Cell Cycle 2013;12:145-56.
-
(2013)
Cell Cycle
, vol.12
, pp. 145-156
-
-
Würth, R.1
Pattarozzi, A.2
Gatti, M.3
-
51
-
-
84893361058
-
Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
-
Liu X, Chhipa RR, Pooya S, et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A 2014;111:E435-44.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. E435-E444
-
-
Liu, X.1
Chhipa, R.R.2
Pooya, S.3
-
52
-
-
0031682742
-
The IGF family and folliculogenesis
-
Adashi EY. The IGF family and folliculogenesis. J Reprod Immunol 1998;39:13-9.
-
(1998)
J Reprod Immunol
, vol.39
, pp. 13-19
-
-
Adashi, E.Y.1
-
53
-
-
33646029746
-
Insulin sensitivity during combined androgen blockade for prostate cancer
-
Smith MR, Lee H, Nathan DM. Insulin sensitivity during combined androgen blockade for prostate cancer. J Clin Endocrinol Metab 2006;91:1305-8.
-
(2006)
J Clin Endocrinol Metab
, vol.91
, pp. 1305-1308
-
-
Smith, M.R.1
Lee, H.2
Nathan, D.M.3
-
54
-
-
14644433735
-
The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy
-
Warshamana-Greene GS, Litz J, Buchdunger E, et al. The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res 2005;11:1563-71.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 1563-1571
-
-
Warshamana-Greene, G.S.1
Litz, J.2
Buchdunger, E.3
-
55
-
-
84883764605
-
Inhibition of lung tumorigenesis by metformin is associated with decreased plasma igf-I and diminished receptor tyrosine kinase signaling
-
Quinn BJ, Dallos M, Kitagawa H, et al. Inhibition of lung tumorigenesis by metformin is associated with decreased plasma igf-I and diminished receptor tyrosine kinase signaling. Cancer Prev Res (Phila) 2013;6:801-10.
-
(2013)
Cancer Prev Res (Phila)
, vol.6
, pp. 801-810
-
-
Quinn, B.J.1
Dallos, M.2
Kitagawa, H.3
-
56
-
-
77953739658
-
Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro
-
Arai M, Uchiba M, Komura H, et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J Pharmacol Exp Ther 2010;334:206-13.
-
(2010)
J Pharmacol Exp Ther
, vol.334
, pp. 206-213
-
-
Arai, M.1
Uchiba, M.2
Komura, H.3
-
57
-
-
84863601677
-
Metformin reduces endogenous reactive oxygen species and associated DNA damage
-
Algire C, Moiseeva O, Deschenes-Simard X, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res (Phila) 2012;5:536-43.
-
(2012)
Cancer Prev Res (Phila)
, vol.5
, pp. 536-543
-
-
Algire, C.1
Moiseeva, O.2
Deschenes-Simard, X.3
-
58
-
-
83755186557
-
Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer
-
Menendez JA, CufiS, Oliveras-Ferraros C, et al. Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer. Aging (Albany NY) 2011;3:1063-77.
-
(2011)
Aging (Albany NY)
, vol.3
, pp. 1063-1077
-
-
Menendez, J.A.1
Cufi, S.2
Oliveras-Ferraros, C.3
-
59
-
-
79955642725
-
Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response
-
Vazquez-Martin A, Oliveras-Ferraros C, CufiS, et al. Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response. Cell Cycle 2011;10:1499-501.
-
(2011)
Cell Cycle
, vol.10
, pp. 1499-1501
-
-
Vazquez-Martin, A.1
Oliveras-Ferraros, C.2
Cufi, S.3
-
60
-
-
84880396632
-
Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways
-
Do MT, Kim HG, Khanal T, et al. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol Appl Pharmacol 2013;271:229-38.
-
(2013)
Toxicol Appl Pharmacol
, vol.271
, pp. 229-238
-
-
Do, M.T.1
Kim, H.G.2
Khanal, T.3
-
61
-
-
84881161281
-
K-ras gene mutation as a predictor of cancer cell responsiveness to metformin
-
Ma Y, Guo FC, Wang W, et al. K-ras gene mutation as a predictor of cancer cell responsiveness to metformin. Mol Med Rep 2013;8:763-8.
-
(2013)
Mol Med Rep
, vol.8
, pp. 763-768
-
-
Ma, Y.1
Guo, F.C.2
Wang, W.3
-
62
-
-
0347444723
-
MicroRNAs: Genomics, biogenesis, mechanism, and function
-
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
63
-
-
0035955374
-
Identification of novel genes coding for small expressed RNAs
-
Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science 2001;294:853-8.
-
(2001)
Science
, vol.294
, pp. 853-858
-
-
Lagos-Quintana, M.1
Rauhut, R.2
Lendeckel, W.3
-
64
-
-
0037321349
-
New microRNAs from mouse and human
-
Lagos-Quintana M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA 2003;9:175-9.
-
(2003)
RNA
, vol.9
, pp. 175-179
-
-
Lagos-Quintana, M.1
Rauhut, R.2
Meyer, J.3
-
65
-
-
0035955361
-
An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans
-
Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858-62.
-
(2001)
Science
, vol.294
, pp. 858-862
-
-
Lau, N.C.1
Lim, L.P.2
Weinstein, E.G.3
-
67
-
-
8144225486
-
MicroRNA genes are transcribed by RNA polymerase II
-
Lee Y, Kim M, Han JJ, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo Journal 2004;23:4051-60.
-
(2004)
Embo Journal
, vol.23
, pp. 4051-4060
-
-
Lee, Y.1
Kim, M.2
Han, J.J.3
-
68
-
-
33744520104
-
Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex
-
Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006;125:887-901.
-
(2006)
Cell
, vol.125
, pp. 887-901
-
-
Han, J.1
Lee, Y.2
Yeom, K.H.3
-
69
-
-
0347361541
-
Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs
-
Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development 2003;17:3011-6.
-
(2003)
Genes & Development
, vol.17
, pp. 3011-3016
-
-
Yi, R.1
Qin, Y.2
Macara, I.G.3
-
70
-
-
1642499415
-
Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs
-
Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004;10:185-91.
-
(2004)
RNA
, vol.10
, pp. 185-191
-
-
Bohnsack, M.T.1
Czaplinski, K.2
Gorlich, D.3
-
71
-
-
23644433363
-
TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing
-
Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005;436:740-4.
-
(2005)
Nature
, vol.436
, pp. 740-744
-
-
Chendrimada, T.P.1
Gregory, R.I.2
Kumaraswamy, E.3
-
72
-
-
27744537851
-
Human RISC couples microRNA biogenesis and posttranscriptional gene silencing
-
Gregory RI, Chendrimada TP, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005;123:631-40.
-
(2005)
Cell
, vol.123
, pp. 631-640
-
-
Gregory, R.I.1
Chendrimada, T.P.2
Cooch, N.3
-
73
-
-
84858446579
-
NON-CODING RNA MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship
-
Pasquinelli AE. NON-CODING RNA MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Reviews Genetics 2012;13:271-82.
-
(2012)
Nature Reviews Genetics
, vol.13
, pp. 271-282
-
-
Pasquinelli, A.E.1
-
74
-
-
84858126071
-
MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review
-
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. Embo Molecular Medicine 2012;4:143-59.
-
(2012)
Embo Molecular Medicine
, vol.4
, pp. 143-159
-
-
Iorio, M.V.1
Croce, C.M.2
-
75
-
-
33645075443
-
miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
-
Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3:87-98.
-
(2006)
Cell Metab
, vol.3
, pp. 87-98
-
-
Esau, C.1
Davis, S.2
Murray, S.F.3
-
76
-
-
28444469246
-
Silencing of microRNAs in vivo with 'antagomirs'
-
Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005;438:685-9.
-
(2005)
Nature
, vol.438
, pp. 685-689
-
-
Krützfeldt, J.1
Rajewsky, N.2
Braich, R.3
-
77
-
-
79959326172
-
miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
-
Dávalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 2011;108:9232-7.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 9232-9237
-
-
Dávalos, A.1
Goedeke, L.2
Smibert, P.3
-
78
-
-
77955456415
-
miR-33 links SREBP-2 induction to repression of sterol transporters
-
Marquart TJ, Allen RM, Ory DS, et al. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 2010;107:12228-32.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 12228-12232
-
-
Marquart, T.J.1
Allen, R.M.2
Ory, D.S.3
-
79
-
-
77953780835
-
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
-
Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010;328:1566-9.
-
(2010)
Science
, vol.328
, pp. 1566-1569
-
-
Najafi-Shoushtari, S.H.1
Kristo, F.2
Li, Y.3
-
80
-
-
77958553499
-
Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation
-
Gerin I, Clerbaux LA, Haumont O, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010;285:33652-61.
-
(2010)
J Biol Chem
, vol.285
, pp. 33652-33661
-
-
Gerin, I.1
Clerbaux, L.A.2
Haumont, O.3
-
81
-
-
80054971110
-
Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
-
Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011;478:404-7.
-
(2011)
Nature
, vol.478
, pp. 404-407
-
-
Rayner, K.J.1
Esau, C.C.2
Hussain, F.N.3
-
83
-
-
0030794277
-
Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene
-
Lewis BC, Shim H, Li Q, et al. Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene. Mol Cell Biol 1997;17:4967-78.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 4967-4978
-
-
Lewis, B.C.1
Shim, H.2
Li, Q.3
-
84
-
-
0037197962
-
Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes
-
Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci U S A 2002;99:6274-9.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 6274-6279
-
-
Menssen, A.1
Hermeking, H.2
-
85
-
-
84902585445
-
Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo
-
[Epub ahead of print]
-
Miyoshi H, Kato K, Iwama H, et al. Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo. Int J Oncol 2013. [Epub ahead of print].
-
(2013)
Int J Oncol
-
-
Miyoshi, H.1
Kato, K.2
Iwama, H.3
-
86
-
-
84862777219
-
Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells
-
Li W, Yuan Y, Huang L, et al. Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells. Diabetes Res Clin Pract 2012;96:187-95.
-
(2012)
Diabetes Res Clin Pract
, vol.96
, pp. 187-195
-
-
Li, W.1
Yuan, Y.2
Huang, L.3
-
87
-
-
84873628875
-
Antitumor effect of metformin in esophageal cancer: in vitro study
-
Kobayashi M, Kato K, Iwama H, et al. Antitumor effect of metformin in esophageal cancer: in vitro study. Int J Oncol 2013;42:517-24.
-
(2013)
Int J Oncol
, vol.42
, pp. 517-524
-
-
Kobayashi, M.1
Kato, K.2
Iwama, H.3
-
88
-
-
84859386824
-
The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo
-
Kato K, Gong J, Iwama H, et al. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther 2012;11:549-60.
-
(2012)
Mol Cancer Ther
, vol.11
, pp. 549-560
-
-
Kato, K.1
Gong, J.2
Iwama, H.3
-
89
-
-
84877673227
-
Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells
-
Avci CB, Harman E, Dodurga Y, et al. Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev 2013;14:765-8.
-
(2013)
Asian Pac J Cancer Prev
, vol.14
, pp. 765-768
-
-
Avci, C.B.1
Harman, E.2
Dodurga, Y.3
-
90
-
-
84901324535
-
Reciprocal effects between microRNA-140-5p and ADAM10 suppress migration and invasion of human tongue cancer cells
-
Kai Y, Peng W, Ling W, et al. Reciprocal effects between microRNA-140-5p and ADAM10 suppress migration and invasion of human tongue cancer cells. Biochem Biophys Res Commun 2014;448:308-14.
-
(2014)
Biochem Biophys Res Commun
, vol.448
, pp. 308-314
-
-
Kai, Y.1
Peng, W.2
Ling, W.3
-
91
-
-
84879607251
-
MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma
-
Yang H, Fang F, Chang R, et al. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology 2013;58:205-17.
-
(2013)
Hepatology
, vol.58
, pp. 205-217
-
-
Yang, H.1
Fang, F.2
Chang, R.3
-
92
-
-
84872130380
-
MicroRNA-140 acts as a liver tumor suppressor by controlling NF-kappaB activity by directly targeting DNA methyltransferase 1 (Dnmt1) expression
-
Takata A, Otsuka M, Yoshikawa T, et al. MicroRNA-140 acts as a liver tumor suppressor by controlling NF-kappaB activity by directly targeting DNA methyltransferase 1 (Dnmt1) expression. Hepatology 2013;57:162-70.
-
(2013)
Hepatology
, vol.57
, pp. 162-170
-
-
Takata, A.1
Otsuka, M.2
Yoshikawa, T.3
-
93
-
-
70450237022
-
Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells
-
Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 2009;28:4065-74.
-
(2009)
Oncogene
, vol.28
, pp. 4065-4074
-
-
Song, B.1
Wang, Y.2
Xi, Y.3
-
94
-
-
84884382332
-
MiR-221/222 target the DNA methyltransferase MGMT in glioma cells
-
Quintavalle C, Mangani D, Roscigno G, et al. MiR-221/222 target the DNA methyltransferase MGMT in glioma cells. PLoS One 2013;8:e74466.
-
(2013)
PLoS One
, vol.8
-
-
Quintavalle, C.1
Mangani, D.2
Roscigno, G.3
-
95
-
-
34547791273
-
Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation
-
le Sage C, Nagel R, Egan DA, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 2007;26:3699-708.
-
(2007)
EMBO J
, vol.26
, pp. 3699-3708
-
-
le Sage, C.1
Nagel, R.2
Egan, D.A.3
-
96
-
-
84878881786
-
miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer
-
Hwang MS, Yu N, Stinson SY, et al. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One 2013;8:e66502.
-
(2013)
PLoS One
, vol.8
-
-
Hwang, M.S.1
Yu, N.2
Stinson, S.Y.3
-
97
-
-
84878802949
-
MicroRNA-222 promotes tumorigenesis via targeting DKK2 and activating the Wnt/beta-catenin signaling pathway
-
Li Q, Shen K, Zhao Y, et al. MicroRNA-222 promotes tumorigenesis via targeting DKK2 and activating the Wnt/beta-catenin signaling pathway. FEBS Lett 2013;587:1742-8.
-
(2013)
FEBS Lett
, vol.587
, pp. 1742-1748
-
-
Li, Q.1
Shen, K.2
Zhao, Y.3
-
98
-
-
84864820077
-
MiR-222 modulates multidrug resistance in human colorectal carcinoma by down-regulating ADAM-17
-
Xu K, Liang X, Shen K, et al. MiR-222 modulates multidrug resistance in human colorectal carcinoma by down-regulating ADAM-17. Exp Cell Res 2012;318:2168-77.
-
(2012)
Exp Cell Res
, vol.318
, pp. 2168-2177
-
-
Xu, K.1
Liang, X.2
Shen, K.3
-
99
-
-
84857109002
-
miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu
-
Quintavalle C, Garofalo M, Zanca C, et al. miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene 2012;31:858-68.
-
(2012)
Oncogene
, vol.31
, pp. 858-868
-
-
Quintavalle, C.1
Garofalo, M.2
Zanca, C.3
-
100
-
-
70949104622
-
miR-221&222 Regulate TRAIL Resistance and Enhance Tumorigenicity through PTEN and TIMP3 Downregulation
-
Garofalo M, Di Leva G, Romano G, et al. miR-221&222 Regulate TRAIL Resistance and Enhance Tumorigenicity through PTEN and TIMP3 Downregulation. Cancer Cell 2009;16:498-509.
-
(2009)
Cancer Cell
, vol.16
, pp. 498-509
-
-
Garofalo, M.1
Di Leva, G.2
Romano, G.3
-
101
-
-
84887321112
-
Metformin inhibits lung cancer cells proliferation through repressing microRNA-222
-
Wang Y, Dai W, Chu X, et al. Metformin inhibits lung cancer cells proliferation through repressing microRNA-222. Biotechnol Lett 2013;35:2013-9.
-
(2013)
Biotechnol Lett
, vol.35
, pp. 2013-2019
-
-
Wang, Y.1
Dai, W.2
Chu, X.3
-
102
-
-
59649119933
-
miR-142-3p restricts cAMP production in CD4+CD25-T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA
-
Huang B, Zhao J, Lei Z, et al. miR-142-3p restricts cAMP production in CD4+CD25-T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep 2009;10:180-5.
-
(2009)
EMBO Rep
, vol.10
, pp. 180-185
-
-
Huang, B.1
Zhao, J.2
Lei, Z.3
-
103
-
-
77954274715
-
E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta
-
Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 2010;59:1794-802.
-
(2010)
Diabetes
, vol.59
, pp. 1794-1802
-
-
Wang, B.1
Herman-Edelstein, M.2
Koh, P.3
-
104
-
-
85027913634
-
MicroRNA-192 suppresses liver metastasis of colon cancer
-
[Epub ahead of print]
-
Geng L, Chaudhuri A, Talmon G, et al. MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene 2013. [Epub ahead of print].
-
(2013)
Oncogene
-
-
Geng, L.1
Chaudhuri, A.2
Talmon, G.3
-
105
-
-
20044395613
-
RAS is regulated by the let-7 microRNA family
-
Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635-47.
-
(2005)
Cell
, vol.120
, pp. 635-647
-
-
Johnson, S.M.1
Grosshans, H.2
Shingara, J.3
-
106
-
-
84881478455
-
Let-7c inhibits A549 cell proliferation through oncogenic TRIB2 related factors
-
Wang PY, Sun YX, Zhang S, et al. Let-7c inhibits A549 cell proliferation through oncogenic TRIB2 related factors. FEBS Lett 2013;587:2675-81.
-
(2013)
FEBS Lett
, vol.587
, pp. 2675-2681
-
-
Wang, P.Y.1
Sun, Y.X.2
Zhang, S.3
-
107
-
-
84880551342
-
Let-7c governs the acquisition of chemo-or radioresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant lung adenocarcinoma
-
Cui SY, Huang JY, Chen YT, et al. Let-7c governs the acquisition of chemo-or radioresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant lung adenocarcinoma. Mol Cancer Res 2013;11:699-713.
-
(2013)
Mol Cancer Res
, vol.11
, pp. 699-713
-
-
Cui, S.Y.1
Huang, J.Y.2
Chen, Y.T.3
-
108
-
-
84887611561
-
MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3
-
Zhao B, Han H, Chen J, et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 2014;342:43-51.
-
(2014)
Cancer Lett
, vol.342
, pp. 43-51
-
-
Zhao, B.1
Han, H.2
Chen, J.3
-
109
-
-
84862908609
-
MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells
-
Nadiminty N, Tummala R, Lou W, et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem 2012;287:1527-37.
-
(2012)
J Biol Chem
, vol.287
, pp. 1527-1537
-
-
Nadiminty, N.1
Tummala, R.2
Lou, W.3
-
110
-
-
84856056915
-
Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer
-
Han HB, Gu J, Zuo HJ, et al. Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. J Pathol 2012;226:544-55.
-
(2012)
J Pathol
, vol.226
, pp. 544-555
-
-
Han, H.B.1
Gu, J.2
Zuo, H.J.3
-
111
-
-
78651411120
-
MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2
-
Lu J, He ML, Wang L, et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 2011;71:225-33.
-
(2011)
Cancer Res
, vol.71
, pp. 225-233
-
-
Lu, J.1
He, M.L.2
Wang, L.3
-
112
-
-
84865428087
-
Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis
-
Palmieri D, D'Angelo D, Valentino T, et al. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene 2012;31:3857-65.
-
(2012)
Oncogene
, vol.31
, pp. 3857-3865
-
-
Palmieri, D.1
D'Angelo, D.2
Valentino, T.3
-
113
-
-
41649091906
-
The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
-
Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894-907.
-
(2008)
Genes Dev
, vol.22
, pp. 894-907
-
-
Park, S.M.1
Gaur, A.B.2
Lengyel, E.3
-
114
-
-
43049103824
-
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
-
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 593-601
-
-
Gregory, P.A.1
Bert, A.G.2
Paterson, E.L.3
-
115
-
-
84872608167
-
MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms
-
Liu YN, Yin JJ, Abou-Kheir W, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 2013;32:296-306.
-
(2013)
Oncogene
, vol.32
, pp. 296-306
-
-
Liu, Y.N.1
Yin, J.J.2
Abou-Kheir, W.3
-
116
-
-
84862519692
-
MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3
-
Feng B, Wang R, Song HZ, et al. MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer 2012;118:3365-76.
-
(2012)
Cancer
, vol.118
, pp. 3365-3376
-
-
Feng, B.1
Wang, R.2
Song, H.Z.3
-
117
-
-
79960391940
-
miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells
-
Eades G, Yao Y, Yang M, et al. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 2011;286:25992-6002.
-
(2011)
J Biol Chem
, vol.286
, pp. 25992-26002
-
-
Eades, G.1
Yao, Y.2
Yang, M.3
-
118
-
-
69249212152
-
MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1
-
Song H, Bu G. MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1. Biochem Biophys Res Commun 2009;388:400-5.
-
(2009)
Biochem Biophys Res Commun
, vol.388
, pp. 400-405
-
-
Song, H.1
Bu, G.2
-
119
-
-
85011942157
-
The ups and downs of miR-205: identifying the roles of miR-205 in mammary gland development and breast cancer
-
Greene SB, Herschkowitz JI, Rosen JM. The ups and downs of miR-205: identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol 2010;7:300-4.
-
(2010)
RNA Biol
, vol.7
, pp. 300-304
-
-
Greene, S.B.1
Herschkowitz, J.I.2
Rosen, J.M.3
-
120
-
-
64149089915
-
Suppression of cell growth and invasion by miR-205 in breast cancer
-
Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 2009;19:439-48.
-
(2009)
Cell Res
, vol.19
, pp. 439-448
-
-
Wu, H.1
Zhu, S.2
Mo, Y.Y.3
-
121
-
-
84897971554
-
miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST
-
Zhou Y, Huang Z, Wu S, et al. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res 2014;33:12.
-
(2014)
J Exp Clin Cancer Res
, vol.33
, pp. 12
-
-
Zhou, Y.1
Huang, Z.2
Wu, S.3
-
122
-
-
84857122981
-
The proto-oncogene Pim-1 is a target of miR-33a
-
Thomas M, Lange-Grunweller K, Weirauch U, et al. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene 2012;31:918-28.
-
(2012)
Oncogene
, vol.31
, pp. 918-928
-
-
Thomas, M.1
Lange-Grunweller, K.2
Weirauch, U.3
-
123
-
-
84858729494
-
Metformin lowers the threshold for stress-induced senescence: a role for the microRNA-200 family and miR-205
-
Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, et al. Metformin lowers the threshold for stress-induced senescence: a role for the microRNA-200 family and miR-205. Cell Cycle 2012;11:1235-46.
-
(2012)
Cell Cycle
, vol.11
, pp. 1235-1246
-
-
Cufí, S.1
Vazquez-Martin, A.2
Oliveras-Ferraros, C.3
-
124
-
-
84899081933
-
Profiling of Circulating MicroRNAs Reveals Common MicroRNAs Linked to Type 2 Diabetes That Change With Insulin Sensitization
-
Ortega FJ, Mercader JM, Moreno-Navarrete JM, et al. Profiling of Circulating MicroRNAs Reveals Common MicroRNAs Linked to Type 2 Diabetes That Change With Insulin Sensitization. Diabetes Care 2014.
-
(2014)
Diabetes Care
-
-
Ortega, F.J.1
Mercader, J.M.2
Moreno-Navarrete, J.M.3
-
125
-
-
84878700567
-
Elevation of miR-221 and-222 in the internal mammary arteries of diabetic subjects and normalization with metformin
-
Coleman CB, Lightell DJ Jr, Moss SC, et al. Elevation of miR-221 and-222 in the internal mammary arteries of diabetic subjects and normalization with metformin. Mol Cell Endocrinol 2013;374:125-9.
-
(2013)
Mol Cell Endocrinol
, vol.374
, pp. 125-129
-
-
Coleman, C.B.1
Lightell, D.J.2
Moss, S.C.3
-
126
-
-
20144373433
-
Reduced expression of Dicer associated with poor prognosis in lung cancer patients
-
Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005;96:111-5.
-
(2005)
Cancer Sci
, vol.96
, pp. 111-115
-
-
Karube, Y.1
Tanaka, H.2
Osada, H.3
-
127
-
-
58049213696
-
Dicer, Drosha, and outcomes in patients with ovarian cancer
-
Merritt WM, Lin YG, Han LY, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008;359:2641-50.
-
(2008)
N Engl J Med
, vol.359
, pp. 2641-2650
-
-
Merritt, W.M.1
Lin, Y.G.2
Han, L.Y.3
-
128
-
-
84875864101
-
Therapeutic strategies targeting cancer stem cells
-
Ning X, Shu J, Du Y, et al. Therapeutic strategies targeting cancer stem cells. Cancer Biol Ther 2013;14:295-303.
-
(2013)
Cancer Biol Ther
, vol.14
, pp. 295-303
-
-
Ning, X.1
Shu, J.2
Du, Y.3
-
129
-
-
84859463669
-
Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells
-
Bao B, Wang Z, Ali S, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 2012;5:355-64.
-
(2012)
Cancer Prev Res (Phila)
, vol.5
, pp. 355-364
-
-
Bao, B.1
Wang, Z.2
Ali, S.3
-
130
-
-
73049110243
-
The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs
-
Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009;11:1487-95.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 1487-1495
-
-
Wellner, U.1
Schubert, J.2
Burk, U.C.3
|