메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Data Mining

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85014149758     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/C2009-0-19715-5     Document Type: Book
Times cited : (380)

References (342)
  • 3
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • Morgan Kaufmann, Santiago, Chile. San Francisco, J. Bocca, M. Jarke, C. Zaniolo (Eds.)
    • Agrawal R., Srikant R. Fast algorithms for mining association rules in large databases. Proceedings of the International Conference on Very Large Data Bases 1994, 478-499. Morgan Kaufmann, Santiago, Chile. San Francisco. J. Bocca, M. Jarke, C. Zaniolo (Eds.).
    • (1994) Proceedings of the International Conference on Very Large Data Bases , pp. 478-499
    • Agrawal, R.1    Srikant, R.2
  • 6
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant, and novel attributes in instance-based learning algorithms
    • Aha D. Tolerating noisy, irrelevant, and novel attributes in instance-based learning algorithms. International Journal of Man-Machine Studies 1992, 36(2):267-287.
    • (1992) International Journal of Man-Machine Studies , vol.36 , Issue.2 , pp. 267-287
    • Aha, D.1
  • 11
    • 0033321433 scopus 로고    scopus 로고
    • An introduction to information extraction
    • Appelt D. An introduction to information extraction. Artificial Intelligence Communications 1999, 12(3):161-172.
    • (1999) Artificial Intelligence Communications , vol.12 , Issue.3 , pp. 161-172
    • Appelt, D.1
  • 13
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine
    • Asuncion A., Newman D.J. UCI Machine Learning Repository 2007, University of California, School of Information and Computer Science, Irvine. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 18
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • Bay S.D. Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis 1999, 3(3):191-209.
    • (1999) Intelligent Data Analysis , vol.3 , Issue.3 , pp. 191-209
    • Bay, S.D.1
  • 19
    • 84882135701 scopus 로고    scopus 로고
    • Near linear time detection of distance-based outliers and applications to security
    • Society for Industrial and Applied Mathematics, San Francisco. Philadelphia
    • Bay S.D., Schwabacher M. Near linear time detection of distance-based outliers and applications to security. Proceedings of the Workshop on Data Mining for Counter Terrorism and Security 2003, Society for Industrial and Applied Mathematics, San Francisco. Philadelphia.
    • (2003) Proceedings of the Workshop on Data Mining for Counter Terrorism and Security
    • Bay, S.D.1    Schwabacher, M.2
  • 29
    • 84882133487 scopus 로고
    • BLI (Bureau of Labour Information), Labour Canada, Bureau of Labour Information, Ottawa
    • BLI (Bureau of Labour Information) Collective Bargaining Review (November) 1988, Labour Canada, Bureau of Labour Information, Ottawa.
    • (1988) Collective Bargaining Review (November)
  • 33
    • 84882231758 scopus 로고    scopus 로고
    • Bayesian network classifiers in Weka. Working Paper 14/2004, Department of Computer Science, University of Waikato, New Zealand.
    • Bouckaert, R.R. (2004). Bayesian network classifiers in Weka. Working Paper 14/2004, Department of Computer Science, University of Waikato, New Zealand.
    • (2004)
    • Bouckaert, R.R.1
  • 34
    • 77952808852 scopus 로고    scopus 로고
    • DensiTree: Making sense of sets of phylogenetic trees
    • Bouckaert R.R. DensiTree: Making sense of sets of phylogenetic trees. Bioinformatics 2010, 26(10):1372-1373.
    • (2010) Bioinformatics , vol.26 , Issue.10 , pp. 1372-1373
    • Bouckaert, R.R.1
  • 35
    • 0004110667 scopus 로고
    • Morgan Kaufmann, San Francisco, R.J. Brachman, H.J. Levesque (Eds.)
    • Readings in knowledge representation 1985, Morgan Kaufmann, San Francisco. R.J. Brachman, H.J. Levesque (Eds.).
    • (1985) Readings in knowledge representation
  • 37
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regression
    • Breiman L. Stacked regression. Machine Learning 1996, 24(1):49-64.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 38
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 39
    • 84882119274 scopus 로고    scopus 로고
    • [Bias, variance, and] arcing classifiers. Technical Report 460. Department of Statistics, University of California, Berkeley.
    • Breiman, L. (1996c). [Bias, variance, and] arcing classifiers. Technical Report 460. Department of Statistics, University of California, Berkeley.
    • (1996)
    • Breiman, L.1
  • 40
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and online
    • Breiman L. Pasting small votes for classification in large databases and online. Machine Learning 1999, 36(1-2):85-103.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 85-103
    • Breiman, L.1
  • 41
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 43
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • Brin S., Motwani R., Ullman J.D., Tsur S. Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Record 1997, 26(2):255-264.
    • (1997) ACM SIGMOD Record , vol.26 , Issue.2 , pp. 255-264
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 44
    • 0038589165 scopus 로고    scopus 로고
    • The anatomy of a large-scale hypertext search engine
    • Brin S., Page L. The anatomy of a large-scale hypertext search engine. Computer Networks and ISDN Systems 1998, 33:107-117.
    • (1998) Computer Networks and ISDN Systems , vol.33 , pp. 107-117
    • Brin, S.1    Page, L.2
  • 47
    • 0002980086 scopus 로고
    • Learning classification trees
    • Buntine W. Learning classification trees. Statistics and Computing 1992, 2(2):63-73.
    • (1992) Statistics and Computing , vol.2 , Issue.2 , pp. 63-73
    • Buntine, W.1
  • 48
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2(2):121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 50
    • 33845629152 scopus 로고
    • Using decision trees to improve case-based learning
    • Morgan Kaufmann, Amherst, MA. San Francisco, P. Utgoff (Ed.)
    • Cardie C. Using decision trees to improve case-based learning. Proceedings of the Tenth International Conference on Machine Learning 1993, 25-32. Morgan Kaufmann, Amherst, MA. San Francisco. P. Utgoff (Ed.).
    • (1993) Proceedings of the Tenth International Conference on Machine Learning , pp. 25-32
    • Cardie, C.1
  • 53
  • 58
    • 0002607026 scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • AAAI Press, Menlo Park, CA, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.)
    • Cheeseman P., Stutz J. Bayesian classification (AutoClass): Theory and results. Advances in Knowledge Discovery and Data Mining 1995, 153-180. AAAI Press, Menlo Park, CA. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.).
    • (1995) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 63
    • 85129530187 scopus 로고
    • K*: An instance-based learner using an entropic distance measure
    • Morgan Kaufmann, Tahoe City, CA. San Francisco, A. Prieditis, S. Russell (Eds.)
    • Cleary J.G., Trigg L.E. K*: An instance-based learner using an entropic distance measure. Proceedings of the Twelfth International Conference on Machine Learning 1995, 108-114. Morgan Kaufmann, Tahoe City, CA. San Francisco. A. Prieditis, S. Russell (Eds.).
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 108-114
    • Cleary, J.G.1    Trigg, L.E.2
  • 65
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • Morgan Kaufmann, Tahoe City, CA. San Francisco, A. Prieditis, S. Russell (Eds.)
    • Cohen W.W. Fast effective rule induction. Proceedings of the Twelfth International Conference on Machine Learning 1995, 115-123. Morgan Kaufmann, Tahoe City, CA. San Francisco. A. Prieditis, S. Russell (Eds.).
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 115-123
    • Cohen, W.W.1
  • 66
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 1992, 9(4):309-347.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 67
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., Vapnik V. Support vector networks. Machine Learning 1995, 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 71
    • 84937400496 scopus 로고    scopus 로고
    • Performance guarantees for hierarchical clustering
    • Springer-Verlag, Sydney. Berlin, J. Kivinen, R.H. Sloan (Eds.)
    • Dasgupta S. Performance guarantees for hierarchical clustering. Proceedings of the Fifteenth Annual Conference on Computational Learning Theory 2002, 351-363. Springer-Verlag, Sydney. Berlin. J. Kivinen, R.H. Sloan (Eds.).
    • (2002) Proceedings of the Fifteenth Annual Conference on Computational Learning Theory , pp. 351-363
    • Dasgupta, S.1
  • 72
    • 84882175930 scopus 로고    scopus 로고
    • Zen and the art of data mining. In Proceedings of the KDD Workshop on Data Mining for Business Applications, Philadelphia. Proceedings at:
    • Dasu, T., Koutsofios, E. & Wright, J. (2006). Zen and the art of data mining. In Proceedings of the KDD Workshop on Data Mining for Business Applications (pp. 37-43). Philadelphia. Proceedings at: . http://labs.accenture.com/kdd2006_workshop/dmba_proceedings.pdf.
    • (2006) , pp. 37-43
    • Dasu, T.1    Koutsofios, E.2    Wright, J.3
  • 73
    • 33749354076 scopus 로고    scopus 로고
    • Homeland defense, privacy-sensitive data mining, and random value distortion
    • Society for International and Applied Mathematics, San Francisco. Philadelphia
    • Datta S., Kargupta H., Sivakumar K. Homeland defense, privacy-sensitive data mining, and random value distortion. Proceedings of the Workshop on Data Mining for Counter Terrorism and Security 2003, Society for International and Applied Mathematics, San Francisco. Philadelphia.
    • (2003) Proceedings of the Workshop on Data Mining for Counter Terrorism and Security
    • Datta, S.1    Kargupta, H.2    Sivakumar, K.3
  • 74
    • 0002546287 scopus 로고
    • Efficient algorithms for agglomerative hierarchical clustering methods
    • Day W.H.E., Edelsbrünner H. Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Classification 1984, 1(1):7-24.
    • (1984) Journal of Classification , vol.1 , Issue.1 , pp. 7-24
    • Day, W.H.E.1    Edelsbrünner, H.2
  • 75
    • 84947935339 scopus 로고    scopus 로고
    • Classification by voting feature intervals
    • Springer-Verlag, Prague. Berlin, M. van Someren, G. Widmer (Eds.)
    • Demiroz G., Guvenir A. Classification by voting feature intervals. Proceedings of the Ninth European Conference on Machine Learning 1997, 85-92. Springer-Verlag, Prague. Berlin. M. van Someren, G. Widmer (Eds.).
    • (1997) Proceedings of the Ninth European Conference on Machine Learning , pp. 85-92
    • Demiroz, G.1    Guvenir, A.2
  • 80
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 2000, 40(2):139-158.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 84
    • 0002160212 scopus 로고    scopus 로고
    • Knowledge acquisition from examples via multiple models
    • Morgan Kaufmann, Nashville. San Francisco, D.H. Fisher (Ed.)
    • Domingos P. Knowledge acquisition from examples via multiple models. Proceedings of the Fourteenth International Conference on Machine Learning 1997, 98-106. Morgan Kaufmann, Nashville. San Francisco. D.H. Fisher (Ed.).
    • (1997) Proceedings of the Fourteenth International Conference on Machine Learning , pp. 98-106
    • Domingos, P.1
  • 85
    • 0002106691 scopus 로고    scopus 로고
    • MetaCost: A general method for making classifiers cost-sensitive
    • ACM Press, San Diego. New York, U.M. Fayyad, S. Chaudhuri, D. Madigan (Eds.)
    • Domingos P. MetaCost: A general method for making classifiers cost-sensitive. Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining 1999, 155-164. ACM Press, San Diego. New York. U.M. Fayyad, S. Chaudhuri, D. Madigan (Eds.).
    • (1999) Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining , pp. 155-164
    • Domingos, P.1
  • 88
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Morgan Kaufmann, Tahoe City, CA. San Francisco, A. Prieditis, S. Russell (Eds.)
    • Dougherty J., Kohavi R., Sahami M. Supervised and unsupervised discretization of continuous features. Proceedings of the Twelfth International Conference on Machine Learning 1995, 194-202. Morgan Kaufmann, Tahoe City, CA. San Francisco. A. Prieditis, S. Russell (Eds.).
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 89
    • 0000201141 scopus 로고    scopus 로고
    • Improving regressors using boosting techniques
    • Morgan Kaufmann, Nashville. San Francisco, D.H. Fisher (Ed.)
    • Drucker H. Improving regressors using boosting techniques. Proceedings of the Fourteenth International Conference on Machine Learning 1997, 107-115. Morgan Kaufmann, Nashville. San Francisco. D.H. Fisher (Ed.).
    • (1997) Proceedings of the Fourteenth International Conference on Machine Learning , pp. 107-115
    • Drucker, H.1
  • 90
    • 0034592774 scopus 로고    scopus 로고
    • Explicitly representing expected cost: An alternative to ROC representation
    • ACM Press, Boston. New York, R. Ramakrishnan, S. Stolfo, R. Bayardo, I. Parsa (Eds.)
    • Drummond C., Holte R.C. Explicitly representing expected cost: An alternative to ROC representation. Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining 2000, 198-207. ACM Press, Boston. New York. R. Ramakrishnan, S. Stolfo, R. Bayardo, I. Parsa (Eds.).
    • (2000) Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining , pp. 198-207
    • Drummond, C.1    Holte, R.C.2
  • 98
  • 99
    • 11144300344 scopus 로고
    • From massive datasets to science catalogs: Applications and challenges
    • NRC, Committee on Applied and Theoretical Statistics, Washington, DC
    • Fayyad U.M., Smyth P. From massive datasets to science catalogs: Applications and challenges. Proceedings of the Workshop on Massive Datasets 1995, 129-141. NRC, Committee on Applied and Theoretical Statistics, Washington, DC.
    • (1995) Proceedings of the Workshop on Massive Datasets , pp. 129-141
    • Fayyad, U.M.1    Smyth, P.2
  • 100
    • 0003641269 scopus 로고    scopus 로고
    • AAAI Press/MIT Press, Menlo Park, CA, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.)
    • Advances in knowledge discovery and data mining 1996, AAAI Press/MIT Press, Menlo Park, CA. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.).
    • (1996) Advances in knowledge discovery and data mining
  • 101
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher D. Knowledge acquisition via incremental conceptual clustering. Machine Learning 1987, 2(2):139-172.
    • (1987) Machine Learning , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.1
  • 102
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Reprinted in Contributions to Mathematical Statistics, 1950. New York: John Wiley
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annual Eugenics 1936, 7(part II):179-188. Reprinted in Contributions to Mathematical Statistics, 1950. New York: John Wiley.
    • (1936) Annual Eugenics , vol.7 , Issue.PART II , pp. 179-188
    • Fisher, R.A.1
  • 103
    • 84882088843 scopus 로고
    • Discriminatory analysis; non-parametric discrimination: Consistency properties. Technical Report 21-49-004(4), USAF School of Aviation Medicine, Randolph Field, TX.
    • Fix, E., & Hodges, J. L. Jr. (1951). Discriminatory analysis; non-parametric discrimination: Consistency properties. Technical Report 21-49-004(4), USAF School of Aviation Medicine, Randolph Field, TX.
    • (1951)
    • Fix, E.1    Hodges Jr, J.L.2
  • 104
    • 0034832530 scopus 로고    scopus 로고
    • Confirmation-guided discovery of first-order rules with Tertius
    • Flach P.A., Lachiche N. Confirmation-guided discovery of first-order rules with Tertius. Machine Learning 1999, 42:61-95.
    • (1999) Machine Learning , vol.42 , pp. 61-95
    • Flach, P.A.1    Lachiche, N.2
  • 107
    • 77952349835 scopus 로고    scopus 로고
    • A review of multi-instance learning assumptions
    • Foulds J., Frank E. A review of multi-instance learning assumptions. Knowledge Engineering Review 2010, 25(1):1-25.
    • (2010) Knowledge Engineering Review , vol.25 , Issue.1 , pp. 1-25
    • Foulds, J.1    Frank, E.2
  • 108
    • 63249106662 scopus 로고    scopus 로고
    • Experiments with random projections for machine learning
    • ACM Press, Washington, DC. New York, L. Getoor, T.E. Senator, P. Domingos, C. Faloutsos (Eds.)
    • Fradkin D., Madigan D. Experiments with random projections for machine learning. Proceedings of the Ninth International Conference on Knowledge Discovery and Data Mining 2003, 517-522. ACM Press, Washington, DC. New York. L. Getoor, T.E. Senator, P. Domingos, C. Faloutsos (Eds.).
    • (2003) Proceedings of the Ninth International Conference on Knowledge Discovery and Data Mining , pp. 517-522
    • Fradkin, D.1    Madigan, D.2
  • 109
    • 4644373132 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Computer Science, University of Waikato, New Zealand
    • Frank E. Pruning decision trees and lists 2000, Ph.D. Dissertation, Department of Computer Science, University of Waikato, New Zealand.
    • (2000) Pruning decision trees and lists
    • Frank, E.1
  • 110
    • 84948166287 scopus 로고    scopus 로고
    • A simple approach to ordinal classification
    • Springer-Verlag, Freiburg, Germany. Berlin, L. de Raedt, P.A. Flach (Eds.)
    • Frank E., Hall M. A simple approach to ordinal classification. Proceedings of the Twelfth European Conference on Machine Learning 2001, 145-156. Springer-Verlag, Freiburg, Germany. Berlin. L. de Raedt, P.A. Flach (Eds.).
    • (2001) Proceedings of the Twelfth European Conference on Machine Learning , pp. 145-156
    • Frank, E.1    Hall, M.2
  • 116
    • 0002129041 scopus 로고    scopus 로고
    • Generating accurate rule sets without global optimization
    • Morgan Kaufmann, Madison, WI. San Francisco, J. Shavlik (Ed.)
    • Frank E., Witten I.H. Generating accurate rule sets without global optimization. Proceedings of the Fifteenth International Conference on Machine Learning 1998, 144-151. Morgan Kaufmann, Madison, WI. San Francisco. J. Shavlik (Ed.).
    • (1998) Proceedings of the Fifteenth International Conference on Machine Learning , pp. 144-151
    • Frank, E.1    Witten, I.H.2
  • 117
    • 0012209798 scopus 로고    scopus 로고
    • Making better use of global discretization
    • Morgan Kaufmann, Bled, Slovenia. San Francisco, I. Bratko, S. Dzeroski (Eds.)
    • Frank E., Witten I.H. Making better use of global discretization. Proceedings of the Sixteenth International Conference on Machine Learning 1999, 115-123. Morgan Kaufmann, Bled, Slovenia. San Francisco. I. Bratko, S. Dzeroski (Eds.).
    • (1999) Proceedings of the Sixteenth International Conference on Machine Learning , pp. 115-123
    • Frank, E.1    Witten, I.H.2
  • 118
    • 84882175003 scopus 로고    scopus 로고
    • Applying propositional learning algorithms to multi-instance data. Technical Report 06/03, Department of Computer Science, University of Waikato, New Zealand.
    • Frank, E., & Xu, X. (2003). Applying propositional learning algorithms to multi-instance data. Technical Report 06/03, Department of Computer Science, University of Waikato, New Zealand.
    • (2003)
    • Frank, E.1    Xu, X.2
  • 119
    • 0033907729 scopus 로고    scopus 로고
    • Machine learning for information extraction in informal domains
    • Freitag D. Machine learning for information extraction in informal domains. Machine Learning 2002, 39(2/3):169-202.
    • (2002) Machine Learning , vol.39 , Issue.2-3 , pp. 169-202
    • Freitag, D.1
  • 120
    • 0006452367 scopus 로고    scopus 로고
    • The alternating decision tree learning algorithm
    • Morgan Kaufmann, Bled, Slovenia. San Francisco, I. Bratko, S. Dzeroski (Eds.)
    • Freund Y., Mason L. The alternating decision tree learning algorithm. Proceedings of the Sixteenth International Conference on Machine Learning 1999, 124-133. Morgan Kaufmann, Bled, Slovenia. San Francisco. I. Bratko, S. Dzeroski (Eds.).
    • (1999) Proceedings of the Sixteenth International Conference on Machine Learning , pp. 124-133
    • Freund, Y.1    Mason, L.2
  • 122
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Freund Y., Schapire R.E. Large margin classification using the perceptron algorithm. Machine Learning 1999, 37(3):277-296.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 123
    • 84882166751 scopus 로고    scopus 로고
    • Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford University, Stanford, CA.
    • Friedman, J. H. (1996). Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford University, Stanford, CA.
    • (1996)
    • Friedman, J.H.1
  • 124
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman J.H. Greedy function approximation: A gradient boosting machine. Annals of Statistics 2001, 29(5):1189-1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 126
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J.H., Hastie T., Tibshirani R. Additive logistic regression: A statistical view of boosting. Annals of Statistics 2000, 28(2):337-374.
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 128
    • 0002435404 scopus 로고
    • Efficient algorithms for finding multiway splits for decision trees
    • Morgan Kaufmann, Tahoe City, CA. San Francisco, A. Prieditis, S. Russell (Eds.)
    • Fulton T., Kasif S., Salzberg S. Efficient algorithms for finding multiway splits for decision trees. Proceedings of the Twelfth International Conference on Machine Learning 1995, 244-251. Morgan Kaufmann, Tahoe City, CA. San Francisco. A. Prieditis, S. Russell (Eds.).
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 244-251
    • Fulton, T.1    Kasif, S.2    Salzberg, S.3
  • 131
    • 14844361816 scopus 로고    scopus 로고
    • ROC 'n' rule learning: Towards a better understanding of covering algorithms
    • Fürnkranz J., Flach P.A. ROC 'n' rule learning: Towards a better understanding of covering algorithms. Machine Learning 2005, 58(1):39-77.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 39-77
    • Fürnkranz, J.1    Flach, P.A.2
  • 133
    • 0029403698 scopus 로고
    • Induction of ripple-down rules applied to modeling large data bases
    • Gaines B.R., Compton P. Induction of ripple-down rules applied to modeling large data bases. Journal of Intelligent Information Systems 1995, 5(3):211-228.
    • (1995) Journal of Intelligent Information Systems , vol.5 , Issue.3 , pp. 211-228
    • Gaines, B.R.1    Compton, P.2
  • 134
    • 3543051838 scopus 로고    scopus 로고
    • Functional trees
    • Gama J. Functional trees. Machine Learning 2004, 55(3):219-250.
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 219-250
    • Gama, J.1
  • 136
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • Genkin A., Lewis D.D., Madigan D. Large-scale Bayesian logistic regression for text categorization. Technometrics 2007, 49(3):291-304.
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 138
    • 14344263553 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data for multiclass text categorization
    • Morgan Kaufmann, Sydney. San Francisco, C. Sammut, A. Hoffmann (Eds.)
    • Ghani R. Combining labeled and unlabeled data for multiclass text categorization. Proceedings of the Nineteenth International Conference on Machine Learning 2002, 187-194. Morgan Kaufmann, Sydney. San Francisco. C. Sammut, A. Hoffmann (Eds.).
    • (2002) Proceedings of the Nineteenth International Conference on Machine Learning , pp. 187-194
    • Ghani, R.1
  • 140
    • 68249142374 scopus 로고    scopus 로고
    • FLARE: Induction with prior knowledge
    • SGES Publications, Cambridge, England, J. Nealon, J. Hunt (Eds.)
    • Giraud-Carrier C. FLARE: Induction with prior knowledge. Research and Development in Expert Systems XIII 1996, 11-24. SGES Publications, Cambridge, England. J. Nealon, J. Hunt (Eds.).
    • (1996) Research and Development in Expert Systems XIII , pp. 11-24
    • Giraud-Carrier, C.1
  • 144
    • 14344256569 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers by maximizing conditional likelihood
    • ACM Press, Banff, AB. New York, R. Greiner, D. Schuurmans (Eds.)
    • Grossman D., Domingos P. Learning Bayesian network classifiers by maximizing conditional likelihood. Proceedings of the Twenty-First International Conference on Machine Learning 2004, 361-368. ACM Press, Banff, AB. New York. R. Greiner, D. Schuurmans (Eds.).
    • (2004) Proceedings of the Twenty-First International Conference on Machine Learning , pp. 361-368
    • Grossman, D.1    Domingos, P.2
  • 148
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46(1-3):389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 149
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Morgan Kaufmann, Stanford, CA. San Francisco, P. Langley (Ed.)
    • Hall M. Correlation-based feature selection for discrete and numeric class machine learning. Proceedings of the Seventeenth International Conference on Machine Learning 2000, 359-366. Morgan Kaufmann, Stanford, CA. San Francisco. P. Langley (Ed.).
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 359-366
    • Hall, M.1
  • 153
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • Han J., Pei J., Yin Y., Mao R. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery 2004, 8(1):53-87.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 155
    • 33745886270 scopus 로고    scopus 로고
    • Classifier Technology and the Illusion of Progress
    • Hand D.J. Classifier Technology and the Illusion of Progress. Statistical Science 2006, 21(1):1-14.
    • (2006) Statistical Science , vol.21 , Issue.1 , pp. 1-14
    • Hand, D.J.1
  • 158
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie T., Tibshirani R. Classification by pairwise coupling. Annals of Statistics 1998, 26(2):451-471.
    • (1998) Annals of Statistics , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 160
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D., Geiger D., Chickering D.M. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 1995, 20(3):197-243.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 165
    • 84942487147 scopus 로고
    • Ridge regression: applications to nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression: applications to nonorthogonal problems. Technometrics 1970, 12(1):69-82.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 69-82
    • Hoerl, A.E.1    Kennard, R.W.2
  • 166
    • 10444266699 scopus 로고
    • Feature selection via the discovery of simple classification rules
    • International Institute for Advanced Studies in Systems Research and Cybernetics. Baden-Baden. Windsor, Ont: International Institute for Advanced Studies in Systems Research and Cybernetics, Baden-Baden, Germany, G.E. Lasker, X. Liu (Eds.)
    • Holmes G., Nevill-Manning C.G. Feature selection via the discovery of simple classification rules. Proceedings of the International Symposium on Intelligent Data Analysis 1995, 75-79. International Institute for Advanced Studies in Systems Research and Cybernetics. Baden-Baden. Windsor, Ont: International Institute for Advanced Studies in Systems Research and Cybernetics, Baden-Baden, Germany. G.E. Lasker, X. Liu (Eds.).
    • (1995) Proceedings of the International Symposium on Intelligent Data Analysis , pp. 75-79
    • Holmes, G.1    Nevill-Manning, C.G.2
  • 168
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte R.C. Very simple classification rules perform well on most commonly used datasets. Machine Learning 1993, 11:63-91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 172
    • 33747739087 scopus 로고
    • Robust decision trees: Removing outliers from databases
    • AAAI Press, Montreal. Menlo Park, CA, U.M. Fayyad, R. Uthurusamy (Eds.)
    • John G.H. Robust decision trees: Removing outliers from databases. Proceedings of the First International Conference on Knowledge Discovery and Data Mining 1995, 174-179. AAAI Press, Montreal. Menlo Park, CA. U.M. Fayyad, R. Uthurusamy (Eds.).
    • (1995) Proceedings of the First International Conference on Knowledge Discovery and Data Mining , pp. 174-179
    • John, G.H.1
  • 173
    • 0003650666 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Computer Science Department, Stanford University, Stanford, CA
    • John G.H. Enhancements to the data mining process 1997, Ph.D. Dissertation, Computer Science Department, Stanford University, Stanford, CA.
    • (1997) Enhancements to the data mining process
    • John, G.H.1
  • 174
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • Morgan Kaufmann, New Brunswick, NJ. San Francisco, H. Hirsh, W. Cohen (Eds.)
    • John G.H., Kohavi R., Pfleger P. Irrelevant features and the subset selection problem. Proceedings of the Eleventh International Conference on Machine Learning 1994, 121-129. Morgan Kaufmann, New Brunswick, NJ. San Francisco. H. Hirsh, W. Cohen (Eds.).
    • (1994) Proceedings of the Eleventh International Conference on Machine Learning , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, P.3
  • 175
    • 0000468432 scopus 로고
    • Estimating continuous distributions in Bayesian classifiers
    • Morgan Kaufmann, Montreal. San Francisco, P. Besnard, S. Hanks (Eds.)
    • John G.H., Langley P. Estimating continuous distributions in Bayesian classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence 1995, 338-345. Morgan Kaufmann, Montreal. San Francisco. P. Besnard, S. Hanks (Eds.).
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 338-345
    • John, G.H.1    Langley, P.2
  • 176
    • 2442622664 scopus 로고
    • An empirical Bayes approach to nonparametric two-way classification
    • Stanford University Press, Palo Alto, CA, H. Solomon (Ed.)
    • Johns M.V. An empirical Bayes approach to nonparametric two-way classification. Studies in item analysis and prediction 1961, Stanford University Press, Palo Alto, CA. H. Solomon (Ed.).
    • (1961) Studies in item analysis and prediction
    • Johns, M.V.1
  • 177
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • Kass R., Wasserman L. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association 1995, 90:928-934.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 928-934
    • Kass, R.1    Wasserman, L.2
  • 179
    • 0026995495 scopus 로고
    • Chimerge: Discretization of numeric attributes
    • AAAI Press, San Jose, CA. Menlo Park, CA, W. Swartout (Ed.)
    • Kerber R. Chimerge: Discretization of numeric attributes. Proceedings of the Tenth National Conference on Artificial Intelligence 1992, 123-128. AAAI Press, San Jose, CA. Menlo Park, CA. W. Swartout (Ed.).
    • (1992) Proceedings of the Tenth National Conference on Artificial Intelligence , pp. 123-128
    • Kerber, R.1
  • 180
    • 0002161390 scopus 로고
    • Learning representative exemplars of concepts: An initial case study
    • Morgan Kaufmann, Irvine, CA. San Francisco, P. Langley (Ed.)
    • Kibler D., Aha D.W. Learning representative exemplars of concepts: An initial case study. Proceedings of the Fourth Machine Learning Workshop 1987, 24-30. Morgan Kaufmann, Irvine, CA. San Francisco. P. Langley (Ed.).
    • (1987) Proceedings of the Fourth Machine Learning Workshop , pp. 24-30
    • Kibler, D.1    Aha, D.W.2
  • 182
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • Morgan Kaufmann, Aberdeen, Scotland. San Francisco, D. Sleeman, P. Edwards (Eds.)
    • Kira K., Rendell L. A practical approach to feature selection. Proceedings of the Ninth International Workshop on Machine Learning 1992, 249-258. Morgan Kaufmann, Aberdeen, Scotland. San Francisco. D. Sleeman, P. Edwards (Eds.).
    • (1992) Proceedings of the Ninth International Workshop on Machine Learning , pp. 249-258
    • Kira, K.1    Rendell, L.2
  • 183
    • 58349084016 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Computer Science, University of Waikato, New Zealand
    • Kirkby R. Improving Hoeffding trees 2007, Ph.D. Dissertation, Department of Computer Science, University of Waikato, New Zealand.
    • (2007) Improving Hoeffding trees
    • Kirkby, R.1
  • 184
    • 0002774069 scopus 로고
    • Feature set search algorithms
    • Sijthoff an Noordhoff, Amsterdam, C.H. Chen (Ed.)
    • Kittler J. Feature set search algorithms. Pattern recognition and signal processing 1978, 41-60. Sijthoff an Noordhoff, Amsterdam. C.H. Chen (Ed.).
    • (1978) Pattern recognition and signal processing , pp. 41-60
    • Kittler, J.1
  • 186
    • 0032256758 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • Extended version published in Journal of the ACM 46 (1999)
    • Kleinberg J. Authoritative sources in a hyperlinked environment. Proceedings of the ACM-SIAM Symposium on Discrete Algorithms 1998, 604-632. Extended version published in Journal of the ACM 46 (1999).
    • (1998) Proceedings of the ACM-SIAM Symposium on Discrete Algorithms , pp. 604-632
    • Kleinberg, J.1
  • 188
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann, Montreal. San Francisco
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence 1995, 1137-1143. Morgan Kaufmann, Montreal. San Francisco.
    • (1995) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 189
    • 84948977233 scopus 로고
    • The power of decision tables
    • Springer-Verlag, Iráklion, Crete. Berlin, N. Lavrac, S. Wrobel (Eds.)
    • Kohavi R. The power of decision tables. Proceedings of the Eighth European Conference on Machine Learning 1995, 174-189. Springer-Verlag, Iráklion, Crete. Berlin. N. Lavrac, S. Wrobel (Eds.).
    • (1995) Proceedings of the Eighth European Conference on Machine Learning , pp. 174-189
    • Kohavi, R.1
  • 190
    • 85156137079 scopus 로고    scopus 로고
    • Scaling up the accuracy of Naïve Bayes classifiers: A decision-tree hybrid
    • AAAI Press, Portland, OR. Menlo Park, CA, E. Simoudis, J.W. Han, U. Fayyad (Eds.)
    • Kohavi R. Scaling up the accuracy of Naïve Bayes classifiers: A decision-tree hybrid. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining 1996, 202-207. AAAI Press, Portland, OR. Menlo Park, CA. E. Simoudis, J.W. Han, U. Fayyad (Eds.).
    • (1996) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining , pp. 202-207
    • Kohavi, R.1
  • 191
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence 1997, 97(1-2):273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 193
    • 0001290841 scopus 로고    scopus 로고
    • Machine learning: Special issue on applications of machine learning and the knowledge discovery process
    • (Eds.)
    • Kohavi R., Provost F. Machine learning: Special issue on applications of machine learning and the knowledge discovery process. Machine Learning 1998, 30(2/3):127-274. (Eds.).
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 127-274
    • Kohavi, R.1    Provost, F.2
  • 194
    • 85119615481 scopus 로고    scopus 로고
    • Error-based and entropy-based discretization of continuous features
    • AAAI Press, Portland, OR. Menlo Park, CA, E. Simoudis, J.W. Han, U. Fayyad (Eds.)
    • Kohavi R., Sahami M. Error-based and entropy-based discretization of continuous features. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining 1996, 114-119. AAAI Press, Portland, OR. Menlo Park, CA. E. Simoudis, J.W. Han, U. Fayyad (Eds.).
    • (1996) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining , pp. 114-119
    • Kohavi, R.1    Sahami, M.2
  • 195
    • 26944467334 scopus 로고    scopus 로고
    • A dynamic adaptation of AD-trees for efficient machine learning on large data sets
    • Morgan Kaufmann, Stanford, CA. San Francisco, P. Langley (Ed.)
    • Komarek P., Moore A. A dynamic adaptation of AD-trees for efficient machine learning on large data sets. Proceedings of the Seventeenth International Conference on Machine Learning 2000, 495-502. Morgan Kaufmann, Stanford, CA. San Francisco. P. Langley (Ed.).
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 495-502
    • Komarek, P.1    Moore, A.2
  • 197
    • 14344250636 scopus 로고    scopus 로고
    • Authorship verification as a one-class classification problem
    • ACM Press, Banff, AB. New York, R. Greiner, D. Schuurmans (Eds.)
    • Koppel M., Schler J. Authorship verification as a one-class classification problem. Proceedings of the Twenty-First International Conference on Machine Learning 2004, 489-495. ACM Press, Banff, AB. New York. R. Greiner, D. Schuurmans (Eds.).
    • (2004) Proceedings of the Twenty-First International Conference on Machine Learning , pp. 489-495
    • Koppel, M.1    Schler, J.2
  • 199
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat M., Holte R.C., Matwin S. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 1998, 30:195-215.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 202
    • 84882095241 scopus 로고    scopus 로고
    • Scatter search: Methodology and implementations in C. Dordrecht, The Netherlands: Kluwer Academic Press.
    • Laguna, M., & Marti, R. (2003). Scatter search: Methodology and implementations in C. Dordrecht, The Netherlands: Kluwer Academic Press.
    • (2003)
    • Laguna, M.1    Marti, R.2
  • 206
  • 207
    • 0029407395 scopus 로고
    • Applications of machine learning and rule induction
    • Langley P., Simon H.A. Applications of machine learning and rule induction. Communications of the ACM 1995, 38(11):55-64.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 55-64
    • Langley, P.1    Simon, H.A.2
  • 208
    • 3242795035 scopus 로고    scopus 로고
    • Special issue on lessons learned from data mining applications and collaborative problem solving
    • (Eds.)
    • Lavrac N., Motoda H., Fawcett T., Holte R., Langley P., Adriaans P. Special issue on lessons learned from data mining applications and collaborative problem solving. Machine Learning 2004, 57(1/2). (Eds.).
    • (2004) Machine Learning , vol.57 , Issue.1-2
    • Lavrac, N.1    Motoda, H.2    Fawcett, T.3    Holte, R.4    Langley, P.5    Adriaans, P.6
  • 213
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • Littlestone N. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning 1988, 2(4):285-318.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 285-318
    • Littlestone, N.1
  • 217
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection: A filter solution
    • Morgan Kaufmann, Bari, Italy. San Francisco, L. Saitta (Ed.)
    • Liu H., Setiono R. A probabilistic approach to feature selection: A filter solution. Proceedings of the Thirteenth International Conference on Machine Learning 1996, 319-327. Morgan Kaufmann, Bari, Italy. San Francisco. L. Saitta (Ed.).
    • (1996) Proceedings of the Thirteenth International Conference on Machine Learning , pp. 319-327
    • Liu, H.1    Setiono, R.2
  • 219
    • 14744274287 scopus 로고    scopus 로고
    • Data mining and its applications in higher education
    • Luan J. Data mining and its applications in higher education. New directions for institutional research 2002, 2002(113):17-36.
    • (2002) New directions for institutional research , vol.2002 , Issue.113 , pp. 17-36
    • Luan, J.1
  • 221
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • Marill T., Green D.M. On the effectiveness of receptors in recognition systems. IEEE Transactions on Information Theory 1963, 9(11):11-17.
    • (1963) IEEE Transactions on Information Theory , vol.9 , Issue.11 , pp. 11-17
    • Marill, T.1    Green, D.M.2
  • 222
    • 0004082786 scopus 로고    scopus 로고
    • Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA
    • Maron O. Learning from ambiguity 1998, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
    • (1998) Learning from ambiguity
    • Maron, O.1
  • 228
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • Melville P., Mooney R.J. Creating diversity in ensembles using artificial data. Information Fusion 2005, 6(1):99-111.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 229
    • 0001161341 scopus 로고
    • Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis
    • Michalski R.S., Chilausky R.L. Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems 1980, 4(2).
    • (1980) International Journal of Policy Analysis and Information Systems , vol.4 , Issue.2
    • Michalski, R.S.1    Chilausky, R.L.2
  • 230
    • 0042194518 scopus 로고
    • Problems of computer-aided concept formation
    • Addison-Wesley, Wokingham, UK
    • Michie D. Problems of computer-aided concept formation. Applications of expert systems 1989, Vol. 2:310-333. Addison-Wesley, Wokingham, UK.
    • (1989) Applications of expert systems , vol.2 , pp. 310-333
    • Michie, D.1
  • 235
    • 1942419246 scopus 로고    scopus 로고
    • The anchors hierarchy: Using the triangle inequality to survive high-dimensional data
    • Morgan Kaufmann, Stanford, CA. San Francisco, C. Boutilier, M. Goldszmidt (Eds.)
    • Moore A.W. The anchors hierarchy: Using the triangle inequality to survive high-dimensional data. Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence 2000, 397-405. Morgan Kaufmann, Stanford, CA. San Francisco. C. Boutilier, M. Goldszmidt (Eds.).
    • (2000) Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence , pp. 397-405
    • Moore, A.W.1
  • 236
    • 85104260032 scopus 로고
    • Efficient algorithms for minimizing cross validation error
    • Morgan Kaufmann, New Brunswick, NJ. San Francisco, W.W. Cohen, H. Hirsh (Eds.)
    • Moore A.W., Lee M.S. Efficient algorithms for minimizing cross validation error. Proceedings of the Eleventh International Conference on Machine Learning 1994, 190-198. Morgan Kaufmann, New Brunswick, NJ. San Francisco. W.W. Cohen, H. Hirsh (Eds.).
    • (1994) Proceedings of the Eleventh International Conference on Machine Learning , pp. 190-198
    • Moore, A.W.1    Lee, M.S.2
  • 237
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • Moore A.W., Lee M.S. Cached sufficient statistics for efficient machine learning with large datasets. Journal Artificial Intelligence Research 1998, 8:67-91.
    • (1998) Journal Artificial Intelligence Research , vol.8 , pp. 67-91
    • Moore, A.W.1    Lee, M.S.2
  • 238
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending k-means with efficient estimation of the number of clusters
    • Morgan Kaufmann, Stanford, CA. San Francisco, P. Langley (Ed.)
    • Moore A.W., Pelleg D. X-means: Extending k-means with efficient estimation of the number of clusters. Proceedings of the Seventeenth International Conference on Machine Learning 2000, 727-734. Morgan Kaufmann, Stanford, CA. San Francisco. P. Langley (Ed.).
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 727-734
    • Moore, A.W.1    Pelleg, D.2
  • 240
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C., Bengio Y. Inference for the generalization error. Machine Learning 2003, 52(3):239-281.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 241
    • 84882142496 scopus 로고    scopus 로고
    • Using information extraction to aid the discovery of prediction rules from texts. In Proceedings of the Workshop on Text Mining at the Sixth International Conference on Knowledge Discovery and Data Mining. Boston. Workshop proceedings at
    • Nahm, U.Y., & Mooney, R.J. (2000). Using information extraction to aid the discovery of prediction rules from texts. In Proceedings of the Workshop on Text Mining at the Sixth International Conference on Knowledge Discovery and Data Mining (pp. 51-58). Boston. Workshop proceedings at . http://www.cs.cmu.edu/%7edunja/WshKDD2000.html.
    • (2000) , pp. 51-58
    • Nahm, U.Y.1    Mooney, R.J.2
  • 245
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K., McCallum A.K., Thrun S., Mitchell T.M. Text classification from labeled and unlabeled documents using EM. Machine Learning 2000, 39(2/3):103-134.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.M.4
  • 249
    • 84882060465 scopus 로고    scopus 로고
    • Broken promises of privacy: Responding to the surprising failure of anonymization. University of Colorado Law Legal Studies Research Paper No. 09-12, August.
    • Ohm, P. (2009). Broken promises of privacy: Responding to the surprising failure of anonymization. University of Colorado Law Legal Studies Research Paper No. 09-12, August.
    • (2009)
    • Ohm, P.1
  • 250
    • 0043023536 scopus 로고
    • Efficient algorithms with neural network behavior
    • Omohundro S.M. Efficient algorithms with neural network behavior. Journal of Complex Systems 1987, 1(2):273-347.
    • (1987) Journal of Complex Systems , vol.1 , Issue.2 , pp. 273-347
    • Omohundro, S.M.1
  • 252
    • 84882067947 scopus 로고    scopus 로고
    • Mining imperfect data. Society for Industrial and Applied Mechanics, Philadelphia.
    • Pearson, R. (2005). Mining imperfect data. Society for Industrial and Applied Mechanics, Philadelphia.
    • (2005)
    • Pearson, R.1
  • 254
    • 0004021178 scopus 로고
    • AAAI Press/MIT Press, Menlo Park, CA, G. Piatetsky-Shapiro, W.J. Frawley (Eds.)
    • Knowledge discovery in databases 1991, AAAI Press/MIT Press, Menlo Park, CA. G. Piatetsky-Shapiro, W.J. Frawley (Eds.).
    • (1991) Knowledge discovery in databases
  • 255
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, B. Schölkopf, C. Burges, A. Smola (Eds.)
    • Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods: Support vector learning 1998, 185-209. MIT Press, Cambridge, MA. B. Schölkopf, C. Burges, A. Smola (Eds.).
    • (1998) Advances in kernel methods: Support vector learning , pp. 185-209
    • Platt, J.1
  • 256
    • 84882191133 scopus 로고    scopus 로고
    • What is the true story about data mining, beer and diapers?
    • Power D.J. What is the true story about data mining, beer and diapers?. DSS News 2002, 3(23). http://www.dssresources.com/newsletters/66.php.
    • (2002) DSS News , vol.3 , Issue.23
    • Power, D.J.1
  • 257
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • AAAI Press, Menlo Park, CA, D. Heckerman, H. Mannila, D. Pregibon, R. Uthurusamy (Eds.)
    • Provost F., Fawcett T. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. Proceedings of the Third International Conference on Knowledge Discovery and Data MiningHuntington Beach, CA 1997, 43-48. AAAI Press, Menlo Park, CA. D. Heckerman, H. Mannila, D. Pregibon, R. Uthurusamy (Eds.).
    • (1997) Proceedings of the Third International Conference on Knowledge Discovery and Data MiningHuntington Beach, CA , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 259
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1986, 1(1):81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 263
    • 84882149857 scopus 로고    scopus 로고
    • Multi instance neural networks. In Proceedings of the ICML Workshop on Attribute-Value and Relational Learning, Stanford, CA.
    • Ramon, J., & de Raedt, L. (2000). Multi instance neural networks. In Proceedings of the ICML Workshop on Attribute-Value and Relational Learning (pp. 53-60). Stanford, CA.
    • (2000) , pp. 53-60
    • Ramon, J.1    de Raedt, L.2
  • 264
    • 31844448950 scopus 로고    scopus 로고
    • Supervised learning versus multiple instance learning: An empirical comparison
    • ACM Press, Bonn. New York
    • Ray S., Craven M. Supervised learning versus multiple instance learning: An empirical comparison. Proceedings of the International Conference on Machine Learning 2005, 697-704. ACM Press, Bonn. New York.
    • (2005) Proceedings of the International Conference on Machine Learning , pp. 697-704
    • Ray, S.1    Craven, M.2
  • 267
    • 84871556450 scopus 로고    scopus 로고
    • Error-correcting output codes for local learners
    • Springer-Verlag, Chemnitz, Germany. Berlin, C. Nedellec, C. Rouveird (Eds.)
    • Ricci F., Aha D.W. Error-correcting output codes for local learners. Proceedings of the European Conference on Machine Learning 1998, 280-291. Springer-Verlag, Chemnitz, Germany. Berlin. C. Nedellec, C. Rouveird (Eds.).
    • (1998) Proceedings of the European Conference on Machine Learning , pp. 280-291
    • Ricci, F.1    Aha, D.W.2
  • 271
    • 0000399152 scopus 로고
    • The minimum description length principle
    • John Wiley, New York
    • Rissanen J. The minimum description length principle. Encylopedia of Statistical Sciences 1985, Vol. 5:523-527. John Wiley, New York.
    • (1985) Encylopedia of Statistical Sciences , vol.5 , pp. 523-527
    • Rissanen, J.1
  • 276
    • 0032001170 scopus 로고    scopus 로고
    • Learning in the "real world."
    • Saitta L., Neri F. Learning in the "real world.". Machine Learning 1998, 30(2/3):133-163.
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 133-163
    • Saitta, L.1    Neri, F.2
  • 277
    • 0026156490 scopus 로고
    • A nearest hyperrectangle learning method
    • Salzberg S. A nearest hyperrectangle learning method. Machine Learning 1991, 6(3):251-276.
    • (1991) Machine Learning , vol.6 , Issue.3 , pp. 251-276
    • Salzberg, S.1
  • 279
    • 84943241561 scopus 로고    scopus 로고
    • Finding association rules that trade support optimally against confidence
    • Springer-Verlag, Freiburg, Germany. Berlin, L. de Raedt, A. Siebes (Eds.)
    • Scheffer T. Finding association rules that trade support optimally against confidence. Proceedings of the Fifth European Conference on Principles of Data Mining and Knowledge Discovery 2001, 424-435. Springer-Verlag, Freiburg, Germany. Berlin. L. de Raedt, A. Siebes (Eds.).
    • (2001) Proceedings of the Fifth European Conference on Principles of Data Mining and Knowledge Discovery , pp. 424-435
    • Scheffer, T.1
  • 283
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Computing Surveys 2002, 34(1):1-47.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 284
    • 8444229122 scopus 로고    scopus 로고
    • How to make stacking better and faster while also taking care of an unknown weakness
    • Morgan Kaufmann, Sydney. San Francisco
    • Seewald A.K. How to make stacking better and faster while also taking care of an unknown weakness. Proceedings of the Nineteenth International Conference on Machine Learning 2002, 54-561. Morgan Kaufmann, Sydney. San Francisco.
    • (2002) Proceedings of the Nineteenth International Conference on Machine Learning , pp. 54-561
    • Seewald, A.K.1
  • 285
  • 286
    • 0002139432 scopus 로고    scopus 로고
    • SPRINT: A scalable parallel classifier for data mining
    • Morgan Kaufmann, Mumbai (Bombay). San Francisco, T.M. Vijayaraman, A.P. Buchmann, C. Mohan, N.L. Sarda (Eds.)
    • Shafer R., Agrawal R., Metha M. SPRINT: A scalable parallel classifier for data mining. Proceedings of the Second International Conference on Very Large Databases 1996, 544-555. Morgan Kaufmann, Mumbai (Bombay). San Francisco. T.M. Vijayaraman, A.P. Buchmann, C. Mohan, N.L. Sarda (Eds.).
    • (1996) Proceedings of the Second International Conference on Very Large Databases , pp. 544-555
    • Shafer, R.1    Agrawal, R.2    Metha, M.3
  • 290
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B. A tutorial on support vector regression. Statistics and Computing 2004, 14(3):199-222.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 292
    • 84897708583 scopus 로고    scopus 로고
    • Mining sequential patterns: Generalizations and performance improvements
    • Lecture Notes in Computer Science. Vol. 1057, Springer-Verlag, London, P.M. Apers, M. Bouzeghoub, G. Gardarin (Eds.)
    • Srikant R., Agrawal R. Mining sequential patterns: Generalizations and performance improvements. Proceedings of the Fifth International Conference on Extending Database Technology. Avignon, France 1996, 3-17. Lecture Notes in Computer Science. Vol. 1057, Springer-Verlag, London. P.M. Apers, M. Bouzeghoub, G. Gardarin (Eds.).
    • (1996) Proceedings of the Fifth International Conference on Extending Database Technology. Avignon, France , pp. 3-17
    • Srikant, R.1    Agrawal, R.2
  • 293
    • 33750516992 scopus 로고
    • On the theory of scales of measurement
    • Stevens S.S. On the theory of scales of measurement. Science 1946, 103:677-680.
    • (1946) Science , vol.103 , pp. 677-680
    • Stevens, S.S.1
  • 294
    • 0034205975 scopus 로고    scopus 로고
    • Multiagent systems: A survey from a machine learning perspective
    • Stone P., Veloso M. Multiagent systems: A survey from a machine learning perspective. Autonomous Robots 2000, 8(3):345-383.
    • (2000) Autonomous Robots , vol.8 , Issue.3 , pp. 345-383
    • Stone, P.1    Veloso, M.2
  • 295
    • 55549144318 scopus 로고    scopus 로고
    • Unimodal regression via prefix isotonic regression
    • Stout Q.F. Unimodal regression via prefix isotonic regression. Computational Statistics and Data Analysis 2008, 53:289-297.
    • (2008) Computational Statistics and Data Analysis , vol.53 , pp. 289-297
    • Stout, Q.F.1
  • 297
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets J. Measuring the accuracy of diagnostic systems. Science 1988, 240:1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.1
  • 298
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting K.M. An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 2002, 14(3):659-665.
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 301
    • 0003980416 scopus 로고    scopus 로고
    • Technical Report ERB-1057, Institute for Information Technology, National Research Council of Canada, Ottawa
    • Turney P.D. Learning to extract key phrases from text 1999, Technical Report ERB-1057, Institute for Information Technology, National Research Council of Canada, Ottawa.
    • (1999) Learning to extract key phrases from text
    • Turney, P.D.1
  • 302
    • 84882175514 scopus 로고    scopus 로고
    • U.S.House of Representatives Subcommittee on Aviation, February 27
    • U.S.House of Representatives Subcommittee on Aviation Hearing on aviation security with a focus on passenger profiling February 27, 2002. http://www.house.gov/transportation/aviation/02-27-02/02-27-02memo.html.
    • (2002) Hearing on aviation security with a focus on passenger profiling
  • 303
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • Utgoff P.E. Incremental induction of decision trees. Machine Learning 1989, 4(2):161-186.
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 161-186
    • Utgoff, P.E.1
  • 304
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff P.E., Berkman N.C., Clouse J.A. Decision tree induction based on efficient tree restructuring. Machine Learning 1997, 29(1):5-44.
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.E.1    Berkman, N.C.2    Clouse, J.A.3
  • 309
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • Morgan Kaufmann, Stanford, CA. San Francisco
    • Wang J., Zucker J.-D. Solving the multiple-instance problem: A lazy learning approach. Proceedings of the International Conference on Machine Learning 2000, 1119-1125. Morgan Kaufmann, Stanford, CA. San Francisco.
    • (2000) Proceedings of the International Conference on Machine Learning , pp. 1119-1125
    • Wang, J.1    Zucker, J.-D.2
  • 311
    • 0001717058 scopus 로고    scopus 로고
    • Induction of model trees for predicting continuous classes
    • University of Economics, Faculty of Informatics and Statistics, Prague. Berlin, M. van Someren, G. Widmer (Eds.)
    • Wang Y., Witten I.H. Induction of model trees for predicting continuous classes. Proceedings of the of the Poster Papers of the European Conference on Machine Learning 1997, 128-137. University of Economics, Faculty of Informatics and Statistics, Prague. Berlin. M. van Someren, G. Widmer (Eds.).
    • (1997) Proceedings of the of the Poster Papers of the European Conference on Machine Learning , pp. 128-137
    • Wang, Y.1    Witten, I.H.2
  • 314
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb G.I. MultiBoosting: A technique for combining boosting and wagging. Machine Learning 2000, 40(2):159-196.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 315
    • 14844351034 scopus 로고    scopus 로고
    • Not so naïve Bayes: Aggregating one-dependence estimators
    • Webb G.I., Boughton J., Wang Z. Not so naïve Bayes: Aggregating one-dependence estimators. Machine Learning 2005, 58(1):5-24.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3
  • 317
    • 0002054321 scopus 로고    scopus 로고
    • The coming age of calm technology
    • Copernicus, New York, P.J. Denning, R.M. Metcalfe (Eds.)
    • Weiser M., Brown J.S. The coming age of calm technology. Beyond calculation: The next fifty years 1997, 75-86. Copernicus, New York. P.J. Denning, R.M. Metcalfe (Eds.).
    • (1997) Beyond calculation: The next fifty years , pp. 75-86
    • Weiser, M.1    Brown, J.S.2
  • 319
    • 0002564447 scopus 로고
    • An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms
    • Wettschereck D., Dietterich T.G. An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms. Machine Learning 1995, 19(1):5-28.
    • (1995) Machine Learning , vol.19 , Issue.1 , pp. 5-28
    • Wettschereck, D.1    Dietterich, T.G.2
  • 322
    • 36248995187 scopus 로고    scopus 로고
    • Text mining
    • 14-1-14-22, CRC Press, Boca Raton, FL, M.P. Singh (Ed.)
    • Witten I.H. Text mining. Practical handbook of Internet computing 2004, 14-1-14-22. CRC Press, Boca Raton, FL. M.P. Singh (Ed.).
    • (2004) Practical handbook of Internet computing
    • Witten, I.H.1
  • 323
    • 0032650194 scopus 로고    scopus 로고
    • Text mining: A new frontier for lossless compression
    • IEEE Press, Snowbird, UT. Los Alamitos, CA, J.A. Storer, M. Cohn (Eds.)
    • Witten I.H., Bray Z., Mahoui M., Teahan W. Text mining: A new frontier for lossless compression. Proceedings of the Data Compression Conference 1999, 198-207. IEEE Press, Snowbird, UT. Los Alamitos, CA. J.A. Storer, M. Cohn (Eds.).
    • (1999) Proceedings of the Data Compression Conference , pp. 198-207
    • Witten, I.H.1    Bray, Z.2    Mahoui, M.3    Teahan, W.4
  • 325
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 1992, 5:241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 327
    • 84944611438 scopus 로고    scopus 로고
    • Chapman and Hall, New York, X. Wu, V. Kumar (Eds.)
    • The top ten algorithms in data mining 2009, Chapman and Hall, New York. X. Wu, V. Kumar (Eds.).
    • (2009) The top ten algorithms in data mining
  • 329
    • 78149333073 scopus 로고    scopus 로고
    • GSpan: Graph-based substructure pattern mining
    • IEEE Computer Society, Maebashi City, Japan. Washington, DC
    • Yan X., Han J. gSpan: Graph-based substructure pattern mining. Proceedings of the IEEE International Conference on Data Mining 2002, 721-724. IEEE Computer Society, Maebashi City, Japan. Washington, DC.
    • (2002) Proceedings of the IEEE International Conference on Data Mining , pp. 721-724
    • Yan, X.1    Han, J.2
  • 331
    • 4444326044 scopus 로고    scopus 로고
    • CloSpan: Mining closed sequential patterns in large datasets
    • Society for Industrial and Applied Mathematics, San Francisco. Philadelphia
    • Yan X., Han J., Afshar R. CloSpan: Mining closed sequential patterns in large datasets. Proceedings of the SIAM International Conference on Data Mining 2003, 166-177. Society for Industrial and Applied Mathematics, San Francisco. Philadelphia.
    • (2003) Proceedings of the SIAM International Conference on Data Mining , pp. 166-177
    • Yan, X.1    Han, J.2    Afshar, R.3
  • 332
    • 84948137421 scopus 로고    scopus 로고
    • Proportional k-interval discretization for Naïve Bayes classifiers
    • Springer-Verlag, Freiburg, Germany. Berlin, L. de Raedt, P. Flach (Eds.)
    • Yang Y., Webb G.I. Proportional k-interval discretization for Naïve Bayes classifiers. Proceedings of the Twelfth European Conference on Machine Learning 2001, 564-575. Springer-Verlag, Freiburg, Germany. Berlin. L. de Raedt, P. Flach (Eds.).
    • (2001) Proceedings of the Twelfth European Conference on Machine Learning , pp. 564-575
    • Yang, Y.1    Webb, G.I.2
  • 334
    • 49049093299 scopus 로고    scopus 로고
    • Scalable data management alternatives to support data mining heterogeneous logs for computer network security
    • Society for International and Applied Mathematics, San Francisco. Philadelphia
    • Yurcik W., Barlow J., Zhou Y., Raje H., Li Y., Yin X., et al. Scalable data management alternatives to support data mining heterogeneous logs for computer network security. Proceedings of the Workshop on Data Mining for Counter Terrorism and Security 2003, Society for International and Applied Mathematics, San Francisco. Philadelphia.
    • (2003) Proceedings of the Workshop on Data Mining for Counter Terrorism and Security
    • Yurcik, W.1    Barlow, J.2    Zhou, Y.3    Raje, H.4    Li, Y.5    Yin, X.6
  • 339
    • 14344259207 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • Omnipress, Banff, AB. Madison, WI
    • Zhang T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. Proceedings of the 21st International Conference on Machine Learning 2004, 919-926. Omnipress, Banff, AB. Madison, WI.
    • (2004) Proceedings of the 21st International Conference on Machine Learning , pp. 919-926
    • Zhang, T.1
  • 341
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Zheng Z., Webb G. Lazy learning of Bayesian rules. Machine Learning 2000, 41(1):53-84.
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.2
  • 342
    • 33947396751 scopus 로고    scopus 로고
    • Solving multi-instance problems with classifier ensemble based on constructive clustering
    • Zhou Z.-H., Zhang M.-L. Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowledge and Information Systems 2007, 11(2):155-170.
    • (2007) Knowledge and Information Systems , vol.11 , Issue.2 , pp. 155-170
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.