메뉴 건너뛰기




Volumn 2, Issue 4, 2002, Pages 721-747

Round Robin Classification

Author keywords

Class binarization; Ensemble techniques; Inductive rule learning; Multi class problems; Pairwise classification

Indexed keywords


EID: 19044382587     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244302320884605     Document Type: Article
Times cited : (428)

References (56)
  • 1
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-169, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-169
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • S. D. Bay. Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis, 3(3):191-209, 1999.
    • (1999) Intelligent Data Analysis , vol.3 , Issue.3 , pp. 191-209
    • Bay, S.D.1
  • 6
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California at Irvine, Irvine CA
    • C. L. Blake and C. J. Merz. UCI repository of machine learning databases, http:// www.ics.uci.edu/̃mlearn/MLRepository.html, 1998. Department of Information and Computer Science, University of California at Irvine, Irvine CA.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261-283, 1989.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • Winter
    • T. G. Dietterich. Machine learning research: Four current directions. AI Magazine, 18(4): 97-136, Winter 1997.
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 15
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895-1924, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 17
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139-158, 2000b.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 18
  • 20
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 0003440665 scopus 로고    scopus 로고
    • Another approach to polychotomous classification
    • Department of Statistics, Stanford University, Stanford, CA
    • J. H. Friedman. Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford University, Stanford, CA, 1996.
    • (1996) Technical Report
    • Friedman, J.H.1
  • 22
    • 0031139832 scopus 로고    scopus 로고
    • Pruning algorithms for rule learning
    • J. Fürnkranz. Pruning algorithms for rule learning. Machine Learning, 27(2):139-171, 1997.
    • (1997) Machine Learning , vol.27 , Issue.2 , pp. 139-171
    • Fürnkranz, J.1
  • 23
    • 84957693645 scopus 로고    scopus 로고
    • Exploiting structural information for text classification on the WWW
    • D. Hand, J. N. Kok, and M. Berthold (eds.), Amsterdam, Netherlands, Springer-Verlag
    • J. Fürnkranz. Exploiting structural information for text classification on the WWW. In D. Hand, J. N. Kok, and M. Berthold (eds.) Advances in Intelligent Data Analysis: Proceedings of the 3rd International Symposium (IDA-99), pp. 487-497, Amsterdam, Netherlands, 1999a. Springer-Verlag.
    • (1999) Advances in Intelligent Data Analysis: Proceedings of the 3rd International Symposium (IDA-99) , pp. 487-497
    • Fürnkranz, J.1
  • 24
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1): 3-54, 1999b.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.1 , pp. 3-54
    • Fürnkranz, J.1
  • 25
    • 0347606558 scopus 로고    scopus 로고
    • Round robin rule learning
    • C. E. Brodley and A. P. Danyluk (eds.), Williamstown, MA, Morgan Kaufmann Publishers
    • J. Fürnkranz. Round robin rule learning. In C. E. Brodley and A. P. Danyluk (eds.) Proceedings of the 18th International Conference on Machine Learning (ICML-01), pp. 146-153, Williamstown, MA, 2001b. Morgan Kaufmann Publishers.
    • (2001) Proceedings of the 18th International Conference on Machine Learning (ICML-01) , pp. 146-153
    • Fürnkranz, J.1
  • 26
    • 0036895475 scopus 로고    scopus 로고
    • Hyperlink ensembles: A case study in hypertext classification
    • Special Issue on Fusion of Multiple Classifiers. To appear
    • J. Fürnkranz. Hyperlink ensembles: A case study in hypertext classification. Information Fusion. Special Issue on Fusion of Multiple Classifiers, 2002. To appear.
    • (2002) Information Fusion
    • Fürnkranz, J.1
  • 28
  • 29
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • To appear
    • C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 2002. To appear.
    • (2002) IEEE Transactions on Neural Networks
    • Hsu, C.-W.1    Lin, C.-J.2
  • 30
    • 0000153354 scopus 로고    scopus 로고
    • Noemon: Design, implementation and performance results of an intelligent assistant for classifier selection
    • A. Kalousis and T. Theoharis. Noemon: Design, implementation and performance results of an intelligent assistant for classifier selection. Intelligent Data Analysis, 3(5):319-337, 1999.
    • (1999) Intelligent Data Analysis , vol.3 , Issue.5 , pp. 319-337
    • Kalousis, A.1    Theoharis, T.2
  • 31
    • 0003250435 scopus 로고
    • Single-layer learning revisited: A stepwise procedure for building and training a neural network
    • F. Fogelman Soulié and J. Hérault (eds.). Springer-Verlag
    • S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: A stepwise procedure for building and training a neural network. In F. Fogelman Soulié and J. Hérault (eds.) Neurocomputing: Algorithms, Architectures and Applications, volume F68 of NATO ASI Series, pp. 41-50. Springer-Verlag, 1990.
    • (1990) Neurocomputing: Algorithms, Architectures and Applications, Volume F68 of NATO ASI Series , vol.F68 , pp. 41-50
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 32
    • 0026955102 scopus 로고
    • Handwritten digit recognition by neural networks with single-layer training
    • S. Knerr, L. Personnaz, and G. Dreyfus. Handwritten digit recognition by neural networks with single-layer training. IEEE Transactions on Neural Networks, 3(6):962-968, 1992.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 962-968
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 34
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • B. Schölkopf, C. Burges, and A. Smola (eds.) chapter 15. MIT Press, Cambridge, MA
    • U. H.-G. Kreßel. Pairwise classification and support vector machines. In B. Schölkopf, C. Burges, and A. Smola (eds.) Advances in Kernel Methods: Support Vector Learning, chapter 15, pp. 255-268. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 255-268
    • Kreßel, U.H.-G.1
  • 36
    • 0032594843 scopus 로고    scopus 로고
    • Task decomposition and module combination based on class relations: A modular neural network for pattern classification
    • B.-L. Lu and M. Ito. Task decomposition and module combination based on class relations: A modular neural network for pattern classification. IEEE Transactions on Neural Networks, 10(5):1244-1256, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 1244-1256
    • Lu, B.-L.1    Ito, M.2
  • 39
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • Q. McNemar. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12:153-157, 1947.
    • (1947) Psychometrika , vol.12 , pp. 153-157
    • McNemar, Q.1
  • 40
    • 84957087567 scopus 로고    scopus 로고
    • Improved pairwise coupling classification with correcting classifiers
    • C. Nédellec and C. Rouveirol (eds.), Chemnitz, Germany, Springer-Verlag
    • M. Moreira and E. Mayoraz. Improved pairwise coupling classification with correcting classifiers. In C. Nédellec and C. Rouveirol (eds.) Proceedings of the 10th European Conference on Machine Learning (ECML-98), pp. 160-171, Chemnitz, Germany, 1998. Springer-Verlag.
    • (1998) Proceedings of the 10th European Conference on Machine Learning (ECML-98) , pp. 160-171
    • Moreira, M.1    Mayoraz, E.2
  • 42
    • 0347606556 scopus 로고    scopus 로고
    • Winning the KDD99 classification cup: Bagged boosting
    • B. Pfahringer. Winning the KDD99 classification cup: Bagged boosting. SIGKDD explorations, 1(2):65-66, 2000.
    • (2000) SIGKDD Explorations , vol.1 , Issue.2 , pp. 65-66
    • Pfahringer, B.1
  • 44
  • 48
    • 1442267080 scopus 로고
    • Learning decision lists
    • R. L. Rivest. Learning decision lists. Machine Learning, 2:229-246, 1987.
    • (1987) Machine Learning , vol.2 , pp. 229-246
    • Rivest, R.L.1
  • 50
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 53
    • 0007993990 scopus 로고
    • Connectionist learning of expert preferences by comparison training
    • D. Touretzky (ed.). Morgan Kaufmann
    • G. Tesauro. Connectionist learning of expert preferences by comparison training. In D. Touretzky (ed.) Advances in Neural Information Processing Systems 1 (NIPS-88), pp. 99-106. Morgan Kaufmann, 1989.
    • (1989) Advances in Neural Information Processing Systems 1 (NIPS-88) , pp. 99-106
    • Tesauro, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.