메뉴 건너뛰기




Volumn 2000-January, Issue , 2000, Pages 86-93

Analyzing the Effectiveness and Applicability of Co-training

Author keywords

co training; expectation maximization; learning with labeled and unlabeled data; text classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); MAXIMUM PRINCIPLE; SUPERVISED LEARNING; TEXT PROCESSING;

EID: 85136905861     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/354756.354805     Document Type: Conference Paper
Times cited : (957)

References (18)
  • 1
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings of COLT '98, 1998.
    • (1998) Proceedings of COLT '98
    • Blum, A.1    Mitchell, T.2
  • 4
    • 85119383022 scopus 로고    scopus 로고
    • Unsupervised models for named entity classification
    • M. Collins and Y. Singer. Unsupervised models for named entity classification. In Proceedings of EMNLP*99, 1999.
    • (1999) Proceedings of EMNLP*99
    • Collins, M.1    Singer, Y.2
  • 5
    • 85183697799 scopus 로고    scopus 로고
    • Relational learning with statistical predicate invention: Better models for hypertext
    • To app ear
    • M. Craven and S. Slattery. Relational learning with statistical predicate invention: Better models for hypertext. Machine Learning. To app ear.
    • Machine Learning
    • Craven, M.1    Slattery, S.2
  • 6
    • 0018711255 scopus 로고
    • Using probabili stic models of document retrieval without relevance information
    • W. B. Croft and D. J. Harper. Using probabili stic models of document retrieval without relevance information. Journal of Documentation, 35:285-295, 1979.
    • (1979) Journal of Documentation , vol.35 , pp. 285-295
    • Croft, W.B.1    Harper, D.J.2
  • 8
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 10
    • 84898982939 scopus 로고    scopus 로고
    • Exploitin g generative models in discriminative classi ers
    • T. Jaakkola and D. Haussler. Exploitin g generative models in discriminative classi ers. In Advances in NIPS 11, 1999.
    • (1999) Advances in NIPS , vol.11
    • Jaakkola, T.1    Haussler, D.2
  • 11
    • 0002409860 scopus 로고    scopus 로고
    • A probabilis tic analysis of the Ro cchio algorithm with TFIDF for text categorization
    • T. Joachims. A probabilis tic analysis of the Ro cchio algorithm with TFIDF for text categorization. In Proceedings of ICML '97, 1997.
    • (1997) Proceedings of ICML '97
    • Joachims, T.1
  • 12
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using supp ort vector machines
    • T. Joachims. Transductive inference for text classification using supp ort vector machines. In Proceedings of ICML '99, 1999.
    • (1999) Proceedings of ICML '99
    • Joachims, T.1
  • 13
    • 0001409330 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The indep endence assumption in information retrieval
    • D. D. Lewis. Naive (Bayes) at forty: The indep endence assumption in information retrieval. In Proceedings of ECML-98, 1998.
    • (1998) Proceedings of ECML-98
    • Lewis, D.D.1
  • 14
    • 0001673996 scopus 로고    scopus 로고
    • A comparison of event models for naive Bayes text classi catio n
    • Tech. rep. WS-98-05, AAAI Press
    • A. McCallum and K. Nigam. A comparison of event models for naive Bayes text classi catio n. In AAAI-98 Workshop on Learning for Text Categorization, 1998. Tech. rep. WS-98-05, AAAI Press. http://www.cs.cmu.edu/mccallum.
    • (1998) AAAI-98 Workshop on Learning for Text Categorization
    • McCallum, A.1    Nigam, K.2
  • 15
    • 0002332781 scopus 로고    scopus 로고
    • Employing EM in pool-based active learning for text classification
    • A. McCallum and K. Nigam. Employing EM in pool-based active learning for text classification. In Proceedings of ICML '98, 1998.
    • (1998) Proceedings of ICML '98
    • McCallum, A.1    Nigam, K.2
  • 16
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from lab eled and unlab eled documents using EM
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from lab eled and unlab eled documents using EM. Machine Learning, 39(2/3):103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 17
    • 85183706605 scopus 로고    scopus 로고
    • Learning dictionaries for information extraction using multi-level boot-strapping
    • E. Rilo and R. Jones. Learning dictionaries for information extraction using multi-level boot-strapping. In Proceedings of AAAI-99, 1999.
    • (1999) Proceedings of AAAI-99
    • Rilo, E.1    Jones, R.2
  • 18
    • 85141919230 scopus 로고
    • Unsup ervised word sense disambiguati on rivaling sup ervised metho ds
    • D. Yarowsky. Unsup ervised word sense disambiguati on rivaling sup ervised metho ds. In Proceedings of ACL-95, 1995.
    • (1995) Proceedings of ACL-95
    • Yarowsky, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.