메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 1113-1120

Efficient lazy elimination for averaged one-dependence estimators

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFIERS; COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; ERROR ANALYSIS; ESTIMATION;

EID: 33749265151     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (23)
  • 2
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple Bayesian classifier
    • Morgan Kaufmann
    • Domingos, P., & Pazzani, M. J. (1996). Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Proc. 13th Int. Conf. Machine Learning (pp. 105-112). Morgan Kaufmann.
    • (1996) Proc. 13th Int. Conf. Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.J.2
  • 4
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Morgan Kaufmann
    • Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. Proc. 13th Int. Joint Conf. Artificial Intelligence (IJCAI-93) (pp. 1022-1029). Morgan Kaufmann.
    • (1993) Proc. 13th Int. Joint Conf. Artificial Intelligence (IJCAI-93) , pp. 1022-1029
    • Fayyad, U.M.1    Irani, K.B.2
  • 7
    • 0002610991 scopus 로고    scopus 로고
    • Learning augmented Bayesian classifers: A comparison of distribution-based and classification-based approaches
    • Keogh, E. J., & Pazzani, M. J. (1999). Learning augmented Bayesian classifers: A comparison of distribution-based and classification-based approaches. Proc. Int. Workshop on Artificial Intelligence and Statistics (pp. 225-230).
    • (1999) Proc. Int. Workshop on Artificial Intelligence and Statistics , pp. 225-230
    • Keogh, E.J.1    Pazzani, M.J.2
  • 8
    • 0022848955 scopus 로고
    • Feature selection and extraction
    • T. Y. Young and K.-S. Fu (Eds.). New York: Academic Press
    • Kittler, J. (1986). Feature selection and extraction. In T. Y. Young and K.-S. Fu (Eds.), Handbook of Pattern Recognition and Image Processing. New York: Academic Press.
    • (1986) Handbook of Pattern Recognition and Image Processing
    • Kittler, J.1
  • 10
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • San Francisco: Morgan Kaufmann
    • Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss functions. Proc. 13th Int. Conf. Machine Learning (pp. 275-283). San Francisco: Morgan Kaufmann.
    • (1996) Proc. 13th Int. Conf. Machine Learning , pp. 275-283
    • Kohavi, R.1    Wolpert, D.2
  • 11
    • 84886741606 scopus 로고
    • Induction of recursive Bayesian classifiers
    • Berlin: Springer-Verlag
    • Langley, P. (1993). Induction of recursive Bayesian classifiers. Proc. 1993 European Conf. Machine Learning (pp. 153-164). Berlin: Springer-Verlag.
    • (1993) Proc. 1993 European Conf. Machine Learning , pp. 153-164
    • Langley, P.1
  • 14
    • 85010067887 scopus 로고    scopus 로고
    • Learning limited dependence Bayesian classifiers
    • Menlo Park, CA: AAAI Press
    • Sahami, M. (1996). Learning limited dependence Bayesian classifiers. Proc. 2nd Int. Conf. Knowledge Discovery in Databases (pp. 334-338). Menlo Park, CA: AAAI Press.
    • (1996) Proc. 2nd Int. Conf. Knowledge Discovery in Databases , pp. 334-338
    • Sahami, M.1
  • 15
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • Webb, G. I. (2000). Multiboosting: A technique for combining boosting and wagging. Machine Learning, 40, 159-196.
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 16
  • 17
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive Bayes: Aggregating one-dependence estimators. Machine Learning, 58, 5-24.
    • (2005) Machine Learning , vol.58 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3
  • 23
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Zheng, Z., & Webb, G. I. (2000). Lazy learning of Bayesian rules. Machine Learning, 41, 53-84.
    • (2000) Machine Learning , vol.41 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.