-
2
-
-
0037980626
-
Model selection criteria for learning belief nets: An empirical comparison
-
Allen, T. V., & Greiner, R. (2000). Model selection criteria for learning belief nets: An empirical comparison. Proc. 17th Intl. Conf. on Machine Learning (pp. 1047-1054).
-
(2000)
Proc. 17th Intl. Conf. on Machine Learning
, pp. 1047-1054
-
-
Allen, T.V.1
Greiner, R.2
-
3
-
-
20044370515
-
-
(Tech. Rept.). Center for Language and Speech Processing, Johns Hopkins Univ., Baltimore, MD
-
Bilmes, J., Zweig, G., Richardson, T., Filali, K., Livescu, K., Xu, P., Jackson, K., Brandman, Y., Sandness, E., Holtz, E., Torres, J., & Byrne, B. (2001). Discriminatively structured graphical models for speech recognition (Tech. Rept.). Center for Language and Speech Processing, Johns Hopkins Univ., Baltimore, MD.
-
(2001)
Discriminatively Structured Graphical Models for Speech Recognition
-
-
Bilmes, J.1
Zweig, G.2
Richardson, T.3
Filali, K.4
Livescu, K.5
Xu, P.6
Jackson, K.7
Brandman, Y.8
Sandness, E.9
Holtz, E.10
Torres, J.11
Byrne, B.12
-
4
-
-
0003408496
-
-
Dept. Information and Computer Science, Univ. California, Irvine, CA
-
Blake, C., & Merz, C. J. (2000). UCI repository of machine learning databases. Dept. Information and Computer Science, Univ. California, Irvine, CA. http://-www.ics.uci.edu/~mlearn/MLRepository.html.
-
(2000)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Merz, C.J.2
-
5
-
-
0031272327
-
Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
-
Chickering, M., & Heckerman, D. (1997). Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 29, 181-212.
-
(1997)
Machine Learning
, vol.29
, pp. 181-212
-
-
Chickering, M.1
Heckerman, D.2
-
6
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14, 462-467.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
7
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
8
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29, 103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
10
-
-
21744462998
-
On bias, variance, 0/1 - Loss, and the curse-of-dimensionality
-
Friedman, J. H. (1997). On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
11
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
12
-
-
0036927090
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
Greiner, R., &: Zhou, W. (2002). Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Proc. 18th Natl. Conf. on Artificial Intelligence (pp. 167-173).
-
(2002)
Proc. 18th Natl. Conf. on Artificial Intelligence
, pp. 167-173
-
-
Greiner, R.1
Zhou, W.2
-
13
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
M. Jordan (Ed.). Cambridge, MA: MIT Press
-
Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. Jordan (Ed.), Learning in Graphical Models. Cambridge, MA: MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Heckerman, D.1
-
14
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, M.3
-
15
-
-
0007727813
-
Maximum entropy discrimination
-
Cambridge, MA: MIT Press
-
Jaakkola, T., Meila, M., & Jebara, T. (1999). Maximum entropy discrimination. In Advances in neural information processing systems 12. Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
-
-
Jaakkola, T.1
Meila, M.2
Jebara, T.3
-
16
-
-
84898995489
-
Maximum conditional likelihood via bound maximization and the CEM algorithm
-
Cambridge, MA: MIT Press
-
Jebara, T., & Pentland, A. (1999). Maximum conditional likelihood via bound maximization and the CEM algorithm. In Advances in neural information processing systems 11. Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
-
-
Jebara, T.1
Pentland, A.2
-
17
-
-
0002610991
-
Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches
-
Keogh, E., & Pazzani, M. (1999). Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. Proc. 7th Intl. Wk-shp. on AI and Statistics (pp. 225-230).
-
(1999)
Proc. 7th Intl. Wk-shp. on AI and Statistics
, pp. 225-230
-
-
Keogh, E.1
Pazzani, M.2
-
18
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
19
-
-
0028482006
-
Learning Bayesian belief networks: An approach based on the MDL principle
-
Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10, 269-293.
-
(1994)
Computational Intelligence
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
20
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
-
Cambridge, MA: MIT Press
-
Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in neural information processing systems 14. Cambridge, MA: MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Ng, A.Y.1
Jordan, M.I.2
-
22
-
-
0004161838
-
-
Cambridge, UK: Cambridge University Press
-
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C (2nd ed.). Cambridge, UK: Cambridge University Press.
-
(1992)
Numerical Recipes in C (2nd Ed.)
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
23
-
-
0042346121
-
Tree induction for probability-based ranking
-
Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52, 199-216.
-
(2003)
Machine Learning
, vol.52
, pp. 199-216
-
-
Provost, F.1
Domingos, P.2
-
24
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42, 203-231.
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
26
-
-
0003614273
-
-
New York, NY: Springer
-
Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search. New York, NY: Springer.
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
|