메뉴 건너뛰기




Volumn , Issue , 2004, Pages 361-368

Learning Bayesian Network classifiers by maximizing conditional likelihood

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); CLASSIFIERS; COMPUTATIONAL METHODS; MAXIMUM LIKELIHOOD ESTIMATION; NUMERICAL METHODS; PARAMETER ESTIMATION; PROBABILITY; SET THEORY;

EID: 14344256569     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (225)

References (27)
  • 2
    • 0037980626 scopus 로고    scopus 로고
    • Model selection criteria for learning belief nets: An empirical comparison
    • Allen, T. V., & Greiner, R. (2000). Model selection criteria for learning belief nets: An empirical comparison. Proc. 17th Intl. Conf. on Machine Learning (pp. 1047-1054).
    • (2000) Proc. 17th Intl. Conf. on Machine Learning , pp. 1047-1054
    • Allen, T.V.1    Greiner, R.2
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • Dept. Information and Computer Science, Univ. California, Irvine, CA
    • Blake, C., & Merz, C. J. (2000). UCI repository of machine learning databases. Dept. Information and Computer Science, Univ. California, Irvine, CA. http://-www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2000) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.J.2
  • 5
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    • Chickering, M., & Heckerman, D. (1997). Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 29, 181-212.
    • (1997) Machine Learning , vol.29 , pp. 181-212
    • Chickering, M.1    Heckerman, D.2
  • 6
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14, 462-467.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 8
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29, 103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 10
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 - Loss, and the curse-of-dimensionality
    • Friedman, J. H. (1997). On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 12
    • 0036927090 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • Greiner, R., &: Zhou, W. (2002). Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Proc. 18th Natl. Conf. on Artificial Intelligence (pp. 167-173).
    • (2002) Proc. 18th Natl. Conf. on Artificial Intelligence , pp. 167-173
    • Greiner, R.1    Zhou, W.2
  • 13
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • M. Jordan (Ed.). Cambridge, MA: MIT Press
    • Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. Jordan (Ed.), Learning in Graphical Models. Cambridge, MA: MIT Press.
    • (1999) Learning in Graphical Models
    • Heckerman, D.1
  • 14
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., & Chickering, M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, M.3
  • 16
    • 84898995489 scopus 로고    scopus 로고
    • Maximum conditional likelihood via bound maximization and the CEM algorithm
    • Cambridge, MA: MIT Press
    • Jebara, T., & Pentland, A. (1999). Maximum conditional likelihood via bound maximization and the CEM algorithm. In Advances in neural information processing systems 11. Cambridge, MA: MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Jebara, T.1    Pentland, A.2
  • 17
    • 0002610991 scopus 로고    scopus 로고
    • Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches
    • Keogh, E., & Pazzani, M. (1999). Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. Proc. 7th Intl. Wk-shp. on AI and Statistics (pp. 225-230).
    • (1999) Proc. 7th Intl. Wk-shp. on AI and Statistics , pp. 225-230
    • Keogh, E.1    Pazzani, M.2
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 19
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10, 269-293.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 20
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
    • Cambridge, MA: MIT Press
    • Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in neural information processing systems 14. Cambridge, MA: MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Ng, A.Y.1    Jordan, M.I.2
  • 23
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52, 199-216.
    • (2003) Machine Learning , vol.52 , pp. 199-216
    • Provost, F.1    Domingos, P.2
  • 24
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42, 203-231.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.