메뉴 건너뛰기




Volumn 11454 LNCS, Issue , 2019, Pages 325-340

Variable-length representation for EC-based feature selection in high-dimensional data

Author keywords

Evolutionary algorithms; Feature selection; Variable length representation

Indexed keywords

CALCULATIONS; CLUSTERING ALGORITHMS; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS;

EID: 85065703189     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-030-16692-2_22     Document Type: Conference Paper
Times cited : (1690)

References (24)
  • 1
    • 84884713798 scopus 로고    scopus 로고
    • A weighted majority vote strategy using bayesian networks
    • Petrosino, A. (ed.), pp., Springer, Heidelberg
    • Cordella, L.P., De Stefano, C., Fontanella, F., Scotto di Freca, A.: A weighted majority vote strategy using bayesian networks. In: Petrosino, A. (ed.) ICIAP 2013 Part II. LNCS, vol. 8157, pp. 219–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41184-7 23
    • (2013) ICIAP 2013 Part II. LNCS , vol.8157 , pp. 219-228
    • Cordella, L.P.1    Stefano, C.2    Fontanella, F.3    Scotto Di Freca, A.4
  • 3
    • 84874279120 scopus 로고    scopus 로고
    • A novel Naive Bayes voting strategy for combining classifiers
    • Frontiers, pp., September
    • De Stefano, C., Fontanella, F., Scotto Di Freca, A.: A novel Naive Bayes voting strategy for combining classifiers. In: 2012 International Conference on Frontiers in Handwriting Recognition, pp. 467–472, September 2012
    • (2012) 2012 International Conference On , pp. 467-472
    • de Stefano, C.1    Fontanella, F.2    Scotto Di Freca, A.3
  • 4
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M., Liu, H.: Feature selection for classification. Intel. Data Anal. 1(1–4), 131–156 (1997)
    • (1997) Intel. Data Anal , vol.1 , Issue.1-4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 5
    • 84982830440 scopus 로고    scopus 로고
    • A survey on evolutionary computation approaches to feature selection
    • Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)
    • (2016) IEEE Trans. Evol. Comput. , vol.20 , Issue.4 , pp. 606-626
    • Xue, B.1    Zhang, M.2    Browne, W.N.3    Yao, X.4
  • 6
    • 33845220705 scopus 로고    scopus 로고
    • Evolutionary approach to inverse planning in coplanar radiotherapy
    • Bevilacqua, V., Mastronardi, G., Piscopo, G.: Evolutionary approach to inverse planning in coplanar radiotherapy. Image Vis. Comput. 25(2), 196–203 (2007)
    • (2007) Image Vis. Comput. , vol.25 , Issue.2 , pp. 196-203
    • Bevilacqua, V.1    Mastronardi, G.2    Piscopo, G.3
  • 8
    • 70449515181 scopus 로고    scopus 로고
    • Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering
    • October
    • Menolascina, F., et al.: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinform. 10(12), October 2009
    • (2009) BMC Bioinform , vol.10 , Issue.12
    • Menolascina, F.1
  • 9
    • 84875891154 scopus 로고    scopus 로고
    • Strategic design and multi-objective optimisation of distribution networks based on genetic algorithms
    • Bevilacqua, V., Costantino, N., Dotoli, M., Falagario, M., Sciancalepore, F.: Strategic design and multi-objective optimisation of distribution networks based on genetic algorithms. Int. J. Comput. Integr. Manuf. 25(12), 1139–1150 (2012)
    • (2012) Int. J. Comput. Integr. Manuf. , vol.25 , Issue.12 , pp. 1139-1150
    • Bevilacqua, V.1    Costantino, N.2    Dotoli, M.3    Falagario, M.4    Sciancalepore, F.5
  • 10
    • 84857340264 scopus 로고    scopus 로고
    • A novel multi objective genetic algorithm for the portfolio optimization
    • Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.), pp., Springer, Heidelberg
    • Bevilacqua, V., Pacelli, V., Saladino, S.: A novel multi objective genetic algorithm for the portfolio optimization. In: Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2011. LNCS, vol. 6838, pp. 186–193. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24728-6 25
    • (2011) ICIC 2011. LNCS , vol.6838 , pp. 186-193
    • Bevilacqua, V.1    Pacelli, V.2    Saladino, S.3
  • 12
  • 13
    • 47249140417 scopus 로고    scopus 로고
    • Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 285–294. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78761-7 29
    • De Stefano, C., Fontanella, F., Marrocco, C.: A GA-based feature selection algorithm for remote sensing images. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 285–294. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78761-7 29
    • A Ga-Based Feature Selection Algorithm for Remote Sensing Images
    • de Stefano, C.1    Fontanella, F.2    Marrocco, C.3
  • 14
    • 84887472714 scopus 로고    scopus 로고
    • A GA-based feature selection approach with an application to handwritten character recognition
    • De Stefano, C., Fontanella, F., Marrocco, C., Scotto di Freca, A.: A GA-based feature selection approach with an application to handwritten character recognition. Pattern Recogn. Lett. 35, 130–141 (2014)
    • (2014) Pattern Recogn. Lett. , vol.35 , pp. 130-141
    • de Stefano, C.1    Fontanella, F.2    Marrocco, C.3    Scotto Di Freca, A.4
  • 15
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • Hong, J.H., Cho, S.B.: Efficient huge-scale feature selection with speciated genetic algorithm. Pattern Recogn. Lett. 27(2), 143–150 (2006)
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.2 , pp. 143-150
    • Hong, J.H.1    Cho, S.B.2
  • 17
    • 84924532800 scopus 로고    scopus 로고
    • An evolutionary algorithm with the partial sequential forward floating search mutation for large-scale feature selection prob-lems
    • Jeong, Y.S., Shin, K.S., Jeong, M.K.: An evolutionary algorithm with the partial sequential forward floating search mutation for large-scale feature selection prob-lems.J.Oper.Res.Soc.66(4), 529–538 (2015)
    • (2015) J.Oper.Res.Soc. , vol.66 , Issue.4 , pp. 529-538
    • Jeong, Y.S.1    Shin, K.S.2    Jeong, M.K.3
  • 18
    • 80053080403 scopus 로고    scopus 로고
    • Feature selection for high dimensional data: An evolutionary filter approach
    • Yahya, A.A., Osman, A., Ramli, A.R., Balola, A.: Feature selection for high dimensional data: an evolutionary filter approach. J. Comput. Sci. 7, 800–820 (2011)
    • (2011) J. Comput. Sci. , vol.7 , pp. 800-820
    • Yahya, A.A.1    Osman, A.2    Ramli, A.R.3    Balola, A.4
  • 19
    • 0000772708 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • pp., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 359–366. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 20
    • 33747043594 scopus 로고    scopus 로고
    • Error thresholds in genetic algorithms
    • Ochoa, G.: Error thresholds in genetic algorithms. Evol. Comput. 14(2), 157–182 (2006)
    • (2006) Evol. Comput. , vol.14 , Issue.2 , pp. 157-182
    • Ochoa, G.1
  • 21
    • 34447343762 scopus 로고    scopus 로고
    • A hybrid genetic algorithm for feature selection wrapper based on mutual information
    • Huang, J., Cai, Y., Xu, X.: A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recogn. Lett. 28(13), 1825–1844 (2007)
    • (2007) Pattern Recogn. Lett. , vol.28 , Issue.13 , pp. 1825-1844
    • Huang, J.1    Cai, Y.2    Xu, X.3
  • 22
    • 84888315345 scopus 로고    scopus 로고
    • Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst
    • Oreski, S., Oreski, G.: Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 41(4, Part 2), 2052–2064 (2014)
    • (2014) Appl , vol.41 , Issue.4, Part 2 , pp. 2052-2064
    • Oreski, S.1    Oreski, G.2
  • 24
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.