메뉴 건너뛰기




Volumn 101, Issue 6, 2017, Pages 2241-2250

Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production

Author keywords

2,3 butanediol (2,3 BDO); 2,3 butanediol dehydrogenase; Pyruvate decarboxylase deficient (Pdc ) yeast; Saccharomyces cerevisiae; acetolactate decarboxylase; acetolactate synthase

Indexed keywords

METABOLIC ENGINEERING; METABOLISM; RUBBER APPLICATIONS; SYNTHETIC RUBBER;

EID: 85012872608     PISSN: 01757598     EISSN: 14320614     Source Type: Journal    
DOI: 10.1007/s00253-017-8172-1     Document Type: Review
Times cited : (43)

References (62)
  • 1
    • 85026594077 scopus 로고    scopus 로고
    • Enhanced pyruvate to acetolactate conversion in yeast
    • Anthony LC, Maggio-Hall LA (2014) Enhanced pyruvate to acetolactate conversion in yeast. US patent 8,669,094 B2
    • (2014) US patent 8,669 , vol.94 , pp. B2
    • Anthony, L.C.1    Maggio-Hall, L.A.2
  • 2
    • 70349427105 scopus 로고    scopus 로고
    • Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
    • COI: 1:CAS:528:DC%2BD1MXhtlWrtb3L
    • Atsumi S, Li Z, Liao JC (2009) Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75(19):6306–6311. doi:10.1128/aem.01160-09
    • (2009) Appl Environ Microbiol , vol.75 , Issue.19 , pp. 6306-6311
    • Atsumi, S.1    Li, Z.2    Liao, J.C.3
  • 3
    • 84888769998 scopus 로고    scopus 로고
    • Molecular cloning and expression of fungal cellobiose transporters and beta-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3sXitVWnu73I
    • Bae YH, Kang KH, Jin YS, Seo JH (2014) Molecular cloning and expression of fungal cellobiose transporters and beta-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J Biotechnol 169:34–41. doi:10.1016/j.jbiotec.2013.10.030
    • (2014) J Biotechnol , vol.169 , pp. 34-41
    • Bae, Y.H.1    Kang, K.H.2    Jin, Y.S.3    Seo, J.H.4
  • 4
    • 0031828225 scopus 로고    scopus 로고
    • Fermentation of glycerol to 1, 3-propanediol and 2, 3-butanediol by Klebsiella pneumoniae
    • COI: 1:CAS:528:DyaK1cXls12gtbc%3D
    • Biebl H, Zeng A-P, Menzel K, Deckwer W-D (1998) Fermentation of glycerol to 1, 3-propanediol and 2, 3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50(1):24–29
    • (1998) Appl Microbiol Biotechnol , vol.50 , Issue.1 , pp. 24-29
    • Biebl, H.1    Zeng, A.-P.2    Menzel, K.3    Deckwer, W.-D.4
  • 5
    • 84865777627 scopus 로고    scopus 로고
    • Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
    • Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5(65):1–16. doi:10.1186/1754-6834-5-65
    • (2012) Biotechnol Biofuels , vol.5 , Issue.65 , pp. 1-16
    • Brat, D.1    Weber, C.2    Lorenzen, W.3    Bode, H.B.4    Boles, E.5
  • 6
    • 70349759561 scopus 로고    scopus 로고
    • Biotechnological production of 2,3-butanediol-current state and prospects
    • COI: 1:CAS:528:DC%2BD1MXht1CqtbvL
    • Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol Adv 27(6):715–725. doi:10.1016/j.biotechadv.2009.05.002
    • (2009) Biotechnol Adv , vol.27 , Issue.6 , pp. 715-725
    • Celinska, E.1    Grajek, W.2
  • 7
    • 84960365090 scopus 로고    scopus 로고
    • Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase
    • Cho S, Kim T, Woo HM, Lee J, Kim Y, Um Y (2015) Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase. PLoS One 10(9):e0138109. doi:10.1371/journal.pone.0138109
    • (2015) PLoS One , vol.10 , Issue.9
    • Cho, S.1    Kim, T.2    Woo, H.M.3    Lee, J.4    Kim, Y.5    Um, Y.6
  • 8
    • 84994236578 scopus 로고    scopus 로고
    • Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose
    • COI: 1:CAS:528:DC%2BC28Xhtlegtb%2FI
    • Choi EJ, Kim JW, Kim SJ, Seo SO, Lane S, Park YC, Jin YS, Seo JH (2016) Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose. Biotechnol J 11(11):1424–1432. doi:10.1002/biot.201600042
    • (2016) Biotechnol J , vol.11 , Issue.11 , pp. 1424-1432
    • Choi, E.J.1    Kim, J.W.2    Kim, S.J.3    Seo, S.O.4    Lane, S.5    Park, Y.C.6    Jin, Y.S.7    Seo, J.H.8
  • 9
    • 84903906224 scopus 로고    scopus 로고
    • Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518
    • COI: 1:CAS:528:DC%2BC2cXht1SltL7L
    • Dai JJ, Cheng JS, Liang YQ, Jiang T, Yuan YJ (2014) Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518. Bioresour Technol 167:433–440. doi:10.1016/j.biortech.2014.06.044
    • (2014) Bioresour Technol , vol.167 , pp. 433-440
    • Dai, J.J.1    Cheng, J.S.2    Liang, Y.Q.3    Jiang, T.4    Yuan, Y.J.5
  • 10
    • 84855568105 scopus 로고    scopus 로고
    • Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38XhsFynsLs%3D
    • De Smidt O, Du Preez JC, Albertyn J (2012) Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Res 12(1):33–47. doi:10.1111/j.1567-1364.2011.00760
    • (2012) FEMS Yeast Res , vol.12 , Issue.1 , pp. 33-47
    • De Smidt, O.1    Du Preez, J.C.2    Albertyn, J.3
  • 12
    • 0033199590 scopus 로고    scopus 로고
    • Spectrophotometric assay of alpha-acetolactate decarboxylase
    • COI: 1:CAS:528:DyaK1MXls12gtb0%3D
    • Dulieu C, Poncelet D (1999) Spectrophotometric assay of alpha-acetolactate decarboxylase. Enzym Microb Technol 25(6):537–542. doi:10.1016/S0141-0229(99)00079-4
    • (1999) Enzym Microb Technol , vol.25 , Issue.6 , pp. 537-542
    • Dulieu, C.1    Poncelet, D.2
  • 13
    • 66249090878 scopus 로고    scopus 로고
    • Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD1MXmsFWisb0%3D
    • Ehsani M, Fernandez MR, Biosca JA, Julien A, Dequin S (2009) Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol 75(10):3196–3205. doi:10.1128/Aem.02157-08
    • (2009) Appl Environ Microbiol , vol.75 , Issue.10 , pp. 3196-3205
    • Ehsani, M.1    Fernandez, M.R.2    Biosca, J.A.3    Julien, A.4    Dequin, S.5
  • 14
    • 0029984511 scopus 로고    scopus 로고
    • Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
    • COI: 1:CAS:528:DyaK28XhsFyntrw%3D
    • Flikweert MT, Vander Zanden L, Janssen WMTM, Steensma HY, VanDijken JP, Pronk JT (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12(3):247–257. doi:10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I
    • (1996) Yeast , vol.12 , Issue.3 , pp. 247-257
    • Flikweert, M.T.1    Vander Zanden, L.2    Janssen, W.M.T.M.3    Steensma, H.Y.4    VanDijken, J.P.5    Pronk, J.T.6
  • 15
    • 85013479697 scopus 로고    scopus 로고
    • Bio-based chemicals
    • Fryer C (2014) Bio-based chemicals, Tecnon OrbiChem, http://www.orbichem.com/userfiles/APIC%202014/APIC2014_03_Charles_Fryer.pdf
    • (2014) Tecnon OrbiChem
    • Fryer, C.1
  • 16
    • 77957347059 scopus 로고    scopus 로고
    • Cellodextrin transport in yeast for improved biofuel production
    • COI: 1:CAS:528:DC%2BC3cXht1WmtbnK
    • Galazka JM, Tian CG, Beeson WT, Martinez B, Glass NL, Cate JHD (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330(6000):84–86. doi:10.1126/science.1192838
    • (2010) Science , vol.330 , Issue.6000 , pp. 84-86
    • Galazka, J.M.1    Tian, C.G.2    Beeson, W.T.3    Martinez, B.4    Glass, N.L.5    Cate, J.H.D.6
  • 17
    • 0025346177 scopus 로고
    • Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms
    • COI: 1:CAS:528:DyaK3cXkslels74%3D
    • Gollop N, Damri B, Chipman DM, Barak Z (1990) Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms. J Bacteriol 172(6):3444–3449
    • (1990) J Bacteriol , vol.172 , Issue.6 , pp. 3444-3449
    • Gollop, N.1    Damri, B.2    Chipman, D.M.3    Barak, Z.4
  • 18
    • 0034680769 scopus 로고    scopus 로고
    • Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product
    • COI: 1:CAS:528:DC%2BD3cXosVSkt7k%3D
    • Gonzalez E, Fernandez MR, Larroy C, Sola L, Pericas MA, Pares X, Biosca JA (2000) Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. J Biol Chem 275(46):35876–35885. doi:10.1074/jbc.M003035200
    • (2000) J Biol Chem , vol.275 , Issue.46 , pp. 35876-35885
    • Gonzalez, E.1    Fernandez, M.R.2    Larroy, C.3    Sola, L.4    Pericas, M.A.5    Pares, X.6    Biosca, J.A.7
  • 21
    • 84866183325 scopus 로고    scopus 로고
    • Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365
    • Hassler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244. doi:10.1016/j.biortech.2012.08.047
    • (2012) Bioresour Technol , vol.124 , pp. 237-244
    • Hassler, T.1    Schieder, D.2    Pfaller, R.3    Faulstich, M.4    Sieber, V.5
  • 22
    • 33746891860 scopus 로고    scopus 로고
    • 2O-forming NADH oxidase and impact on redox metabolism
    • COI: 1:CAS:528:DC%2BD28XlvFGqsb8%3D
    • 2O-forming NADH oxidase and impact on redox metabolism. Metab Eng 8(4):303–314. doi:10.1016/j.ymben.2005.12.003
    • (2006) Metab Eng , vol.8 , Issue.4 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 23
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD1MXps1Wqu7k%3D
    • Hou J, Lages NF, Oldiges M, Vemuri GN (2009) Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng 11(4–5):253–261. doi:10.1016/j.ymben.2005.12.003
    • (2009) Metab Eng , vol.11 , Issue.4-5 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 24
    • 84856777402 scopus 로고    scopus 로고
    • Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38XmtVKmsbs%3D
    • Ida Y, Furusawa C, Hirasawa T, Shimizu H (2012) Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng 113(2):192–195. doi:10.1016/j.jbiosc.2011.09.019
    • (2012) J Biosci Bioeng , vol.113 , Issue.2 , pp. 192-195
    • Ida, Y.1    Furusawa, C.2    Hirasawa, T.3    Shimizu, H.4
  • 25
    • 84928745415 scopus 로고    scopus 로고
    • Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium
    • COI: 1:CAS:528:DC%2BC2MXntVCjt7k%3D
    • Jantama K, Polyiam P, Khunnonkwao P, Chan S, Sangproo M, Khor K, Jantama SS, Kanchanatawee S (2015) Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng 30:16–26. doi:10.1016/j.ymben.2015.04.004
    • (2015) Metab Eng , vol.30 , pp. 16-26
    • Jantama, K.1    Polyiam, P.2    Khunnonkwao, P.3    Chan, S.4    Sangproo, M.5    Khor, K.6    Jantama, S.S.7    Kanchanatawee, S.8
  • 26
    • 63449119002 scopus 로고    scopus 로고
    • Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy
    • COI: 1:CAS:528:DC%2BD1MXktF2rt7g%3D
    • Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Hu N, Li S (2009) Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour Technol 100(13):3410–3414. doi:10.1016/j.biortech.2009.02.031
    • (2009) Bioresour Technol , vol.100 , Issue.13 , pp. 3410-3414
    • Ji, X.J.1    Huang, H.2    Du, J.3    Zhu, J.G.4    Ren, L.J.5    Hu, N.6    Li, S.7
  • 27
    • 76849116670 scopus 로고    scopus 로고
    • Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene
    • COI: 1:CAS:528:DC%2BC3cXhtVejsrw%3D
    • Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85(6):1751–1758. doi:10.1007/s00253-009-2222-2
    • (2010) Appl Microbiol Biotechnol , vol.85 , Issue.6 , pp. 1751-1758
    • Ji, X.J.1    Huang, H.2    Zhu, J.G.3    Ren, L.J.4    Nie, Z.K.5    Du, J.6    Li, S.7
  • 28
    • 79952694448 scopus 로고    scopus 로고
    • Microbial 2,3-butanediol production: a state-of-the-art review
    • COI: 1:CAS:528:DC%2BC3MXjs1WgtL4%3D
    • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29(3):351–364. doi:10.1016/j.biotechadv.2011.01.007
    • (2011) Biotechnol Adv , vol.29 , Issue.3 , pp. 351-364
    • Ji, X.J.1    Huang, H.2    Ouyang, P.K.3
  • 29
    • 84963594778 scopus 로고    scopus 로고
    • Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6(MUT) expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6
    • COI: 1:CAS:528:DC%2BC28Xmtlehsrw%3D
    • Jo SE, Seong YJ, Lee HS, Lee SM, Kim SJ, Park K, Park YC (2016) Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6(MUT) expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6. J Biotechnol 227:72–78. doi:10.1016/j.jbiotec.2016.04.005
    • (2016) J Biotechnol , vol.227 , pp. 72-78
    • Jo, S.E.1    Seong, Y.J.2    Lee, H.S.3    Lee, S.M.4    Kim, S.J.5    Park, K.6    Park, Y.C.7
  • 30
    • 84909955815 scopus 로고    scopus 로고
    • Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2cXhvVanu7vF
    • Kim S, Hahn JS (2014) Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae. J Biotechnol 192:192–196. doi:10.1016/j.jbiotec.2014.10.015
    • (2014) J Biotechnol , vol.192 , pp. 192-196
    • Kim, S.1    Hahn, J.S.2
  • 31
    • 84940033066 scopus 로고    scopus 로고
    • Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing
    • COI: 1:CAS:528:DC%2BC2MXht1Kgur7F
    • Kim S, Hahn JS (2015) Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng 31:94–101. doi:10.1016/j.ymben.2015.07.006
    • (2015) Metab Eng , vol.31 , pp. 94-101
    • Kim, S.1    Hahn, J.S.2
  • 32
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3sXhsVeisLnP
    • Kim SJ, Seo SO, Jin YS, Seo JH (2013a) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281. doi:10.1016/j.biortech.2013.07.081
    • (2013) Bioresour Technol , vol.146 , pp. 274-281
    • Kim, S.J.1    Seo, S.O.2    Jin, Y.S.3    Seo, J.H.4
  • 33
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • COI: 1:CAS:528:DC%2BC3sXlsVKjtrk%3D
    • Kim SR, Park YC, Jin YS, Seo JH (2013b) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31(6):851–861. doi:10.1016/j.biotechadv.2013.03.004
    • (2013) Biotechnol Adv , vol.31 , Issue.6 , pp. 851-861
    • Kim, S.R.1    Park, Y.C.2    Jin, Y.S.3    Seo, J.H.4
  • 34
    • 84923922989 scopus 로고    scopus 로고
    • Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2cXivF2lsrY%3D
    • Kim SJ, Seo SO, Park YC, Jin YS, Seo JH (2014) Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J Biotechnol 192:376–382. doi:10.1016/j.jbiotec.2013.12.017
    • (2014) J Biotechnol , vol.192 , pp. 376-382
    • Kim, S.J.1    Seo, S.O.2    Park, Y.C.3    Jin, Y.S.4    Seo, J.H.5
  • 35
    • 84940044539 scopus 로고    scopus 로고
    • Expression of Lactococcus lactis NADH oxidase increases 2, 3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2MXjsFGmurc%3D
    • Kim JW, Seo SO, Zhang GC, Jin YS, Seo JH (2015) Expression of Lactococcus lactis NADH oxidase increases 2, 3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour Technol 191:512–519. doi:10.1016/j.biortech.2015.02.077
    • (2015) Bioresour Technol , vol.191 , pp. 512-519
    • Kim, J.W.1    Seo, S.O.2    Zhang, G.C.3    Jin, Y.S.4    Seo, J.H.5
  • 36
    • 85013396269 scopus 로고    scopus 로고
    • Enhanced production of 2, 3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities
    • Kim JW, Kim J, Seo SO, Kim KH, Jin YS, Seo JH (2016) Enhanced production of 2, 3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechnol Biofuels 9(1):265. doi:10.1186/s13068-016-0677-9
    • (2016) Biotechnol Biofuels , vol.9 , Issue.1 , pp. 265
    • Kim, J.W.1    Kim, J.2    Seo, S.O.3    Kim, K.H.4    Jin, Y.S.5    Seo, J.H.6
  • 37
    • 79961098783 scopus 로고    scopus 로고
    • 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas
    • COI: 1:CAS:528:DC%2BC3MXhtVKhsLvK
    • Kopke M, Mihalcea C, Liew FM, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475. doi:10.1128/AEM.00355-11
    • (2011) Appl Environ Microbiol , vol.77 , Issue.15 , pp. 5467-5475
    • Kopke, M.1    Mihalcea, C.2    Liew, F.M.3    Tizard, J.H.4    Ali, M.S.5    Conolly, J.J.6    Al-Sinawi, B.7    Simpson, S.D.8
  • 38
    • 84899893925 scopus 로고    scopus 로고
    • Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase
    • Kopke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, Patrick WM (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80(11):3394–3403. doi:10.1128/AEM.00301-14
    • (2014) Appl Environ Microbiol , vol.80 , Issue.11 , pp. 3394-3403
    • Kopke, M.1    Gerth, M.L.2    Maddock, D.J.3    Mueller, A.P.4    Liew, F.5    Simpson, S.D.6    Patrick, W.M.7
  • 39
    • 84870384496 scopus 로고    scopus 로고
    • Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes
    • COI: 1:CAS:528:DC%2BC38XhsFSnsr3J
    • Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH (2012) Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35(9):1467–1475. doi:10.1007/s00449-012-0736-y
    • (2012) Bioprocess Biosyst Eng , vol.35 , Issue.9 , pp. 1467-1475
    • Lee, W.H.1    Seo, S.O.2    Bae, Y.H.3    Nan, H.4    Jin, Y.S.5    Seo, J.H.6
  • 40
    • 84945461777 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol
    • COI: 1:CAS:528:DC%2BC2MXks1yktbg%3D
    • Lee HJ, Kim SJ, Yoon JJ, Kim KH, Seo JH, Park YC (2015) Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. Bioresour Technol 191:445–451. doi:10.1016/j.biortech.2015.03.057
    • (2015) Bioresour Technol , vol.191 , pp. 445-451
    • Lee, H.J.1    Kim, S.J.2    Yoon, J.J.3    Kim, K.H.4    Seo, J.H.5    Park, Y.C.6
  • 41
    • 84896297653 scopus 로고    scopus 로고
    • Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
    • COI: 1:CAS:528:DC%2BC2cXntFGhsb4%3D
    • Lian JZ, Chao R, Zhao HM (2014) Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng 23:92–99. doi:10.1016/j.ymben.2014.02.003
    • (2014) Metab Eng , vol.23 , pp. 92-99
    • Lian, J.Z.1    Chao, R.2    Zhao, H.M.3
  • 42
    • 0016702372 scopus 로고
    • Acetoin degradation in Bacillus subtilis by direct oxidative cleavage
    • COI: 1:CAS:528:DyaE2MXmtVels7k%3D
    • Lopez JM, Thoms B, Rehbein H (1975) Acetoin degradation in Bacillus subtilis by direct oxidative cleavage. Eur J Biochem 57(2):425–430
    • (1975) Eur J Biochem , vol.57 , Issue.2 , pp. 425-430
    • Lopez, J.M.1    Thoms, B.2    Rehbein, H.3
  • 43
    • 84978633366 scopus 로고    scopus 로고
    • Microbial production of 2, 3-butanediol. biotechnology set, 2nd edn. p 269–291
    • Maddox IS (2008) Microbial production of 2, 3-butanediol. biotechnology set, 2nd edn. p 269–291. doi:10.1002/9783527620999.ch7f
    • (2008) doi:10.1002/9783527620999.ch7f
    • Maddox, I.S.1
  • 44
    • 46449133199 scopus 로고    scopus 로고
    • Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of beta-glucosidase on its cell surface
    • COI: 1:CAS:528:DC%2BD1cXosFSrs78%3D
    • Nakamura N, Yamada R, Katahira S, Tanaka T, Fukuda H, Kondo A (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of beta-glucosidase on its cell surface. Enzym Microb Technol 43(3):233–236. doi:10.1016/j.enzmictec.2008.04.003
    • (2008) Enzym Microb Technol , vol.43 , Issue.3 , pp. 233-236
    • Nakamura, N.1    Yamada, R.2    Katahira, S.3    Tanaka, T.4    Fukuda, H.5    Kondo, A.6
  • 45
    • 84903818697 scopus 로고    scopus 로고
    • 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2cXmsVChu7o%3D
    • Nan H, Seo SO, Oh EJ, Seo JH, Cate JHD, Jin YS (2014) 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98(12):5757–5764. doi:10.1007/s00253-014-5683-x
    • (2014) Appl Microbiol Biotechnol , vol.98 , Issue.12 , pp. 5757-5764
    • Nan, H.1    Seo, S.O.2    Oh, E.J.3    Seo, J.H.4    Cate, J.H.D.5    Jin, Y.S.6
  • 46
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • COI: 1:CAS:528:DC%2BC38XhvVSrsbzK
    • Ng CY, Jung MY, Lee J, Oh MK (2012) Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Factories 11(1):68. doi:10.1186/1475-2859-11-68
    • (2012) Microb Cell Factories , vol.11 , Issue.1 , pp. 68
    • Ng, C.Y.1    Jung, M.Y.2    Lee, J.3    Oh, M.K.4
  • 47
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3sXhsFyisbo%3D
    • Oud B, Flores CL, Gancedo C, Zhang XY, Trueheart J, Daran JM, Pronk JT, van Maris AJA (2012) An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Factories 11(1):131. doi:10.1186/1475-2859-11-131
    • (2012) Microb Cell Factories , vol.11 , Issue.1 , pp. 131
    • Oud, B.1    Flores, C.L.2    Gancedo, C.3    Zhang, X.Y.4    Trueheart, J.5    Daran, J.M.6    Pronk, J.T.7    van Maris, A.J.A.8
  • 48
    • 84884353190 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production
    • COI: 1:CAS:528:DC%2BC3sXht1CrtLjL
    • Park JM, Song H, Lee HJ, Seung D (2013) In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J Ind Microbiol Biotechnol 40(9):1057–1066. doi:10.1007/s10295-013-1298-y
    • (2013) J Ind Microbiol Biotechnol , vol.40 , Issue.9 , pp. 1057-1066
    • Park, J.M.1    Song, H.2    Lee, H.J.3    Seung, D.4
  • 49
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaK2sXhtFOmuro%3D
    • Pronk JT, Steensma HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):1607–1633. doi:10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4
    • (1996) Yeast , vol.12 , Issue.16 , pp. 1607-1633
    • Pronk, J.T.1    Steensma, H.Y.2    van Dijken, J.P.3
  • 50
    • 84958751282 scopus 로고    scopus 로고
    • Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production
    • COI: 1:CAS:528:DC%2BC28Xislyht7k%3D
    • Rathnasingh C, Park JM, Kim DK, Song H, Chang YK (2016) Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production. Biotechnol Lett 38(6):975–982. doi:10.1007/s10529-016-2062-y
    • (2016) Biotechnol Lett , vol.38 , Issue.6 , pp. 975-982
    • Rathnasingh, C.1    Park, J.M.2    Kim, D.K.3    Song, H.4    Chang, Y.K.5
  • 51
    • 85013468221 scopus 로고    scopus 로고
    • Butanediol (1,4 BDO & 2,3 BDO), 1,3 butadiene and methyl ethyl ketone (MEK) market: applications, bio-based alternatives, downstream potential, market size and forecast
    • Research TM (2012) Butanediol (1,4 BDO & 2,3 BDO), 1,3 butadiene and methyl ethyl ketone (MEK) market: applications, bio-based alternatives, downstream potential, market size and forecast, 2010–2018. http://www.businesswire.com/news/home/20121022006186/en/Research-Markets-Butanediol-14-BDO-23-BDO
    • (2012) 2010–2018
    • Research, T.M.1
  • 53
    • 0035098550 scopus 로고    scopus 로고
    • Biological production of 2,3-butanediol
    • COI: 1:CAS:528:DC%2BD3MXht1Glsbs%3D
    • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55(1):10–18. doi:10.1007/s002530000486
    • (2001) Appl Microbiol Biotechnol , vol.55 , Issue.1 , pp. 10-18
    • Syu, M.J.1
  • 55
    • 33847785682 scopus 로고    scopus 로고
    • Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD2sXisVShsbY%3D
    • Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104(7):2402–2407. doi:10.1073/pnas.0607469104
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.7 , pp. 2402-2407
    • Vemuri, G.N.1    Eiteman, M.A.2    McEwen, J.E.3    Olsson, L.4    Nielsen, J.5
  • 56
    • 77955558633 scopus 로고    scopus 로고
    • Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels
    • COI: 1:CAS:528:DC%2BC3cXotVWmsbk%3D
    • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87(4):1303–1315. doi:10.1007/s00253-010-2707-z
    • (2010) Appl Microbiol Biotechnol , vol.87 , Issue.4 , pp. 1303-1315
    • Weber, C.1    Farwick, A.2    Benisch, F.3    Brat, D.4    Dietz, H.5    Subtil, T.6    Boles, E.7
  • 57
    • 84872766395 scopus 로고    scopus 로고
    • Marine macroalgae: an untapped resource for producing fuels and chemicals
    • COI: 1:CAS:528:DC%2BC38XhvVektbrO
    • Wei N, Quarterman J, Jin YS (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31(2):70–77. doi:10.1016/j.tibtech.2012.10.009
    • (2013) Trends Biotechnol , vol.31 , Issue.2 , pp. 70-77
    • Wei, N.1    Quarterman, J.2    Jin, Y.S.3
  • 58
    • 77749245897 scopus 로고    scopus 로고
    • A novel whole-cell biocatalyst with NAD(+) regeneration for production of chiral chemicals
    • Xiao ZJ, Lv CJ, Gao C, Qin JY, Ma CQ, Liu Z, Liu PH, Li LX, Xu P (2010) A novel whole-cell biocatalyst with NAD(+) regeneration for production of chiral chemicals. PLoS One 5(1):e8860. doi:10.1371/journal.pone.0008860
    • (2010) PLoS One , vol.5 , Issue.1
    • Xiao, Z.J.1    Lv, C.J.2    Gao, C.3    Qin, J.Y.4    Ma, C.Q.5    Liu, Z.6    Liu, P.H.7    Li, L.X.8    Xu, P.9
  • 59
    • 0028215951 scopus 로고
    • Construction of a brewers-yeast having alpha-acetolactate decarboxylase gene from Acetobacter aceti ssp. xylinum integrated in the genome
    • COI: 1:CAS:528:DyaK2cXkt1yjt78%3D
    • Yamano S, Kondo K, Tanaka J, Inoue T (1994) Construction of a brewers-yeast having alpha-acetolactate decarboxylase gene from Acetobacter aceti ssp. xylinum integrated in the genome. J Biotechnol 32(2):173–178. doi:10.1016/0168-1656(94)90180-5
    • (1994) J Biotechnol , vol.32 , Issue.2 , pp. 173-178
    • Yamano, S.1    Kondo, K.2    Tanaka, J.3    Inoue, T.4
  • 60
    • 70349290656 scopus 로고    scopus 로고
    • Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases
    • COI: 1:CAS:528:DC%2BD1MXhtFCis7zE
    • Yan YJ, Lee CC, Liao JC (2009) Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7(19):3914–3917. doi:10.1039/B913501d
    • (2009) Org Biomol Chem , vol.7 , Issue.19 , pp. 3914-3917
    • Yan, Y.J.1    Lee, C.C.2    Liao, J.C.3
  • 61
    • 0021869648 scopus 로고
    • Biomass conversion to butanediol by simultaneous saccharification and fermentation
    • COI: 1:CAS:528:DyaL2MXkvFShu74%3D
    • Yu EKC, Saddler JN (1985) Biomass conversion to butanediol by simultaneous saccharification and fermentation. Trends Biotechnol 3(4):100–104. doi:10.1016/0167-7799(85)90093-9
    • (1985) Trends Biotechnol , vol.3 , Issue.4 , pp. 100-104
    • Yu, E.K.C.1    Saddler, J.N.2
  • 62
    • 82755161073 scopus 로고    scopus 로고
    • Microbial production of diols as platform chemicals: recent progresses
    • COI: 1:CAS:528:DC%2BC3MXhsFOhtLbN
    • Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22(6):749–757. doi:10.1016/j.copbio.2011.05.005
    • (2011) Curr Opin Biotechnol , vol.22 , Issue.6 , pp. 749-757
    • Zeng, A.P.1    Sabra, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.