메뉴 건너뛰기




Volumn 227, Issue , 2016, Pages 72-78

Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6MUT expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6

Author keywords

ALD6; Ethanol; NADH preferring xylose reductase; Pitch pine hydrolysates; Saccharomyces cerevisiae; Xylose

Indexed keywords

COST EFFECTIVENESS; ENZYMES; METABOLISM; SUGAR SUBSTITUTES; XYLOSE; YEAST;

EID: 84963594778     PISSN: 01681656     EISSN: 18734863     Source Type: Journal    
DOI: 10.1016/j.jbiotec.2016.04.005     Document Type: Article
Times cited : (12)

References (30)
  • 1
    • 77957892899 scopus 로고    scopus 로고
    • Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis
    • Du J., Li S., Zhao H. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. Biosyst. 2010, 6:2150-2156.
    • (2010) Mol. Biosyst. , vol.6 , pp. 2150-2156
    • Du, J.1    Li, S.2    Zhao, H.3
  • 2
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A., Christensson C., Wahlbom C.F., Hahn-Hagerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 2000, 66:3381-3386.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hagerdal, B.4
  • 3
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose
    • Farwick A., Bruder S., Schadeweg V., Oreb M., Boles E. Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:5159-5164.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5
  • 5
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2011, 10:2.
    • (2011) Microb. Cell Fact. , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 6
    • 84879831025 scopus 로고    scopus 로고
    • Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds
    • Ibraheem O., Ndimba B.K. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int. J. Biol. Sci. 2013, 9:598-612.
    • (2013) Int. J. Biol. Sci. , vol.9 , pp. 598-612
    • Ibraheem, O.1    Ndimba, B.K.2
  • 7
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin Y.-S., Alper H., Yang Y.-T., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 2005, 71:8249-8256.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8249-8256
    • Jin, Y.-S.1    Alper, H.2    Yang, Y.-T.3    Stephanopoulos, G.4
  • 8
    • 44449171842 scopus 로고    scopus 로고
    • Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1
    • Katahira S., Ito M., Takema H., Fujita Y., Tanino T., Tanaka T., Fukuda H., Kondo A. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb. Technol. 2008, 43:115-119.
    • (2008) Enzyme Microb. Technol. , vol.43 , pp. 115-119
    • Katahira, S.1    Ito, M.2    Takema, H.3    Fujita, Y.4    Tanino, T.5    Tanaka, T.6    Fukuda, H.7    Kondo, A.8
  • 9
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • Kim S.R., Park Y.-C., Jin Y.-S., Seo J.-H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 2013, 31:851-861.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.-C.2    Jin, Y.-S.3    Seo, J.-H.4
  • 10
    • 84874499132 scopus 로고    scopus 로고
    • Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
    • Kim S.R., Skerker J.M., Kang W., Lesmana A., Wei N., Arkin A.P., Jin Y.-S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013, 8:e57048.
    • (2013) PLoS One , vol.8 , pp. e57048
    • Kim, S.R.1    Skerker, J.M.2    Kang, W.3    Lesmana, A.4    Wei, N.5    Arkin, A.P.6    Jin, Y.-S.7
  • 11
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kotter P., Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1993, 38:776-783.
    • (1993) Appl. Microbiol. Biotechnol. , vol.38 , pp. 776-783
    • Kotter, P.1    Ciriacy, M.2
  • 12
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • Kuyper M., Toirkens M.J., Diderich J.A., Winkler A.A., van Dijken J.P., Pronk J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5:925-934.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    van Dijken, J.P.5    Pronk, J.T.6
  • 14
    • 84859480640 scopus 로고    scopus 로고
    • Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae
    • Lee S.-H., Kodaki T., Park Y.-C., Seo J.-H. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J. Biotechnol. 2012, 158:184-191.
    • (2012) J. Biotechnol. , vol.158 , pp. 184-191
    • Lee, S.-H.1    Kodaki, T.2    Park, Y.-C.3    Seo, J.-H.4
  • 15
    • 84884678366 scopus 로고    scopus 로고
    • Growth and fermentation characteristics of Saccharomyces cerevisiae NK28 isolated from kiwi fruit
    • Lee J.S., Park E.H., Kim J.W., Yeo S.H., Kim M.D. Growth and fermentation characteristics of Saccharomyces cerevisiae NK28 isolated from kiwi fruit. J. Microbiol. Biotechnol. 2013, 23:1253-1259.
    • (2013) J. Microbiol. Biotechnol. , vol.23 , pp. 1253-1259
    • Lee, J.S.1    Park, E.H.2    Kim, J.W.3    Yeo, S.H.4    Kim, M.D.5
  • 16
    • 84945461777 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol
    • Lee H.-J., Kim S.-J., Yoon J.-J., Kim K.H., Seo J.-H., Park Y.-C. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. Bioresour. Technol. 2015, 191:445-451.
    • (2015) Bioresour. Technol. , vol.191 , pp. 445-451
    • Lee, H.-J.1    Kim, S.-J.2    Yoon, J.-J.3    Kim, K.H.4    Seo, J.-H.5    Park, Y.-C.6
  • 18
    • 45149107626 scopus 로고    scopus 로고
    • A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks
    • Olofsson K., Bertilsson M., Liden G. A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 2008, 1:7.
    • (2008) Biotechnol. Biofuels , vol.1 , pp. 7
    • Olofsson, K.1    Bertilsson, M.2    Liden, G.3
  • 19
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher B., Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7:9.
    • (2008) Microb. Cell Fact. , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 21
    • 2442641770 scopus 로고    scopus 로고
    • Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
    • Sonderegger M., Jeppsson M., Hahn-Hagerdal B., Sauer U. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl. Environ. Microbiol. 2004, 70:2307-2317.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 2307-2317
    • Sonderegger, M.1    Jeppsson, M.2    Hahn-Hagerdal, B.3    Sauer, U.4
  • 22
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
    • Toivari M.H., Aristidou A., Ruohonen L., Penttilä M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 2001, 3:236-249.
    • (2001) Metab. Eng. , vol.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttilä, M.4
  • 23
    • 84900010663 scopus 로고    scopus 로고
    • Impact of biomass on industry: using ethylene derived from bioethanol within the polyester value chain
    • Van Uytvanck P.P., Hallmark B., Haire G., Marshall P.J., Dennis J.S. Impact of biomass on industry: using ethylene derived from bioethanol within the polyester value chain. ACS Sustain. Chem. Eng. 2014, 2:1098-1105.
    • (2014) ACS Sustain. Chem. Eng. , vol.2 , pp. 1098-1105
    • Van Uytvanck, P.P.1    Hallmark, B.2    Haire, G.3    Marshall, P.J.4    Dennis, J.S.5
  • 24
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • Van Vleet J.H., Jeffries T.W. Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol. 2009, 20:300-306.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 25
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
    • Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab. Eng. 2008, 10:360-369.
    • (2008) Metab. Eng. , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 26
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • Verho R., Londesborough J., Penttila M., Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69:5892-5897.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttila, M.3    Richard, P.4
  • 27
    • 0030772483 scopus 로고    scopus 로고
    • Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation
    • Walfridsson M., Anderlund M., Bao X., Hahn-Hagerdal B. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl. Microbiol. Biotechnol. 1997, 48:218-224.
    • (1997) Appl. Microbiol. Biotechnol. , vol.48 , pp. 218-224
    • Walfridsson, M.1    Anderlund, M.2    Bao, X.3    Hahn-Hagerdal, B.4
  • 29
    • 84885439374 scopus 로고    scopus 로고
    • Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
    • Wei N., Quarterman J., Kim S.R., Cate J.H.D., Jin Y.-S. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4:2580.
    • (2013) Nat. Commun. , vol.4 , pp. 2580
    • Wei, N.1    Quarterman, J.2    Kim, S.R.3    Cate, J.H.D.4    Jin, Y.-S.5
  • 30
    • 80052377729 scopus 로고    scopus 로고
    • Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations
    • Xiong M., Chen G., Barford J. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour. Technol. 2011, 102:9206-9215.
    • (2011) Bioresour. Technol. , vol.102 , pp. 9206-9215
    • Xiong, M.1    Chen, G.2    Barford, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.