-
1
-
-
77957892899
-
Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis
-
Du J., Li S., Zhao H. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. Biosyst. 2010, 6:2150-2156.
-
(2010)
Mol. Biosyst.
, vol.6
, pp. 2150-2156
-
-
Du, J.1
Li, S.2
Zhao, H.3
-
2
-
-
0033856888
-
Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1XYL2, and XKS1 in mineral medium chemostat cultures
-
Eliasson A., Christensson C., Wahlbom C.F., Hahn-Hagerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 2000, 66:3381-3386.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 3381-3386
-
-
Eliasson, A.1
Christensson, C.2
Wahlbom, C.F.3
Hahn-Hagerdal, B.4
-
3
-
-
84898053053
-
Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose
-
Farwick A., Bruder S., Schadeweg V., Oreb M., Boles E. Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:5159-5164.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 5159-5164
-
-
Farwick, A.1
Bruder, S.2
Schadeweg, V.3
Oreb, M.4
Boles, E.5
-
4
-
-
79551670374
-
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
-
Ha S.-J., Galazka J.M., Rin Kim S., Choi J.-H., Yang X., Seo J.-H., Louise Glass N., Cate J.H.D., Jin Y.-S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:504-509.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 504-509
-
-
Ha, S.-J.1
Galazka, J.M.2
Rin Kim, S.3
Choi, J.-H.4
Yang, X.5
Seo, J.-H.6
Louise Glass, N.7
Cate, J.H.D.8
Jin, Y.-S.9
-
5
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2011, 10:2.
-
(2011)
Microb. Cell Fact.
, vol.10
, pp. 2
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
6
-
-
84879831025
-
Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds
-
Ibraheem O., Ndimba B.K. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int. J. Biol. Sci. 2013, 9:598-612.
-
(2013)
Int. J. Biol. Sci.
, vol.9
, pp. 598-612
-
-
Ibraheem, O.1
Ndimba, B.K.2
-
7
-
-
29144502422
-
Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
-
Jin Y.-S., Alper H., Yang Y.-T., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 2005, 71:8249-8256.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8249-8256
-
-
Jin, Y.-S.1
Alper, H.2
Yang, Y.-T.3
Stephanopoulos, G.4
-
8
-
-
44449171842
-
Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1
-
Katahira S., Ito M., Takema H., Fujita Y., Tanino T., Tanaka T., Fukuda H., Kondo A. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb. Technol. 2008, 43:115-119.
-
(2008)
Enzyme Microb. Technol.
, vol.43
, pp. 115-119
-
-
Katahira, S.1
Ito, M.2
Takema, H.3
Fujita, Y.4
Tanino, T.5
Tanaka, T.6
Fukuda, H.7
Kondo, A.8
-
9
-
-
84882640990
-
Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
-
Kim S.R., Park Y.-C., Jin Y.-S., Seo J.-H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 2013, 31:851-861.
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 851-861
-
-
Kim, S.R.1
Park, Y.-C.2
Jin, Y.-S.3
Seo, J.-H.4
-
10
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
Kim S.R., Skerker J.M., Kang W., Lesmana A., Wei N., Arkin A.P., Jin Y.-S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013, 8:e57048.
-
(2013)
PLoS One
, vol.8
, pp. e57048
-
-
Kim, S.R.1
Skerker, J.M.2
Kang, W.3
Lesmana, A.4
Wei, N.5
Arkin, A.P.6
Jin, Y.-S.7
-
11
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae
-
Kotter P., Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1993, 38:776-783.
-
(1993)
Appl. Microbiol. Biotechnol.
, vol.38
, pp. 776-783
-
-
Kotter, P.1
Ciriacy, M.2
-
12
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
-
Kuyper M., Toirkens M.J., Diderich J.A., Winkler A.A., van Dijken J.P., Pronk J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5:925-934.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
van Dijken, J.P.5
Pronk, J.T.6
-
13
-
-
0037209777
-
Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae
-
Lee W.J., Kim M.D., Ryu Y.W., Bisson L.F., Seo J.H. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2002, 60:186-191.
-
(2002)
Appl. Microbiol. Biotechnol.
, vol.60
, pp. 186-191
-
-
Lee, W.J.1
Kim, M.D.2
Ryu, Y.W.3
Bisson, L.F.4
Seo, J.H.5
-
14
-
-
84859480640
-
Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae
-
Lee S.-H., Kodaki T., Park Y.-C., Seo J.-H. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J. Biotechnol. 2012, 158:184-191.
-
(2012)
J. Biotechnol.
, vol.158
, pp. 184-191
-
-
Lee, S.-H.1
Kodaki, T.2
Park, Y.-C.3
Seo, J.-H.4
-
15
-
-
84884678366
-
Growth and fermentation characteristics of Saccharomyces cerevisiae NK28 isolated from kiwi fruit
-
Lee J.S., Park E.H., Kim J.W., Yeo S.H., Kim M.D. Growth and fermentation characteristics of Saccharomyces cerevisiae NK28 isolated from kiwi fruit. J. Microbiol. Biotechnol. 2013, 23:1253-1259.
-
(2013)
J. Microbiol. Biotechnol.
, vol.23
, pp. 1253-1259
-
-
Lee, J.S.1
Park, E.H.2
Kim, J.W.3
Yeo, S.H.4
Kim, M.D.5
-
16
-
-
84945461777
-
Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol
-
Lee H.-J., Kim S.-J., Yoon J.-J., Kim K.H., Seo J.-H., Park Y.-C. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. Bioresour. Technol. 2015, 191:445-451.
-
(2015)
Bioresour. Technol.
, vol.191
, pp. 445-451
-
-
Lee, H.-J.1
Kim, S.-J.2
Yoon, J.-J.3
Kim, K.H.4
Seo, J.-H.5
Park, Y.-C.6
-
17
-
-
55649111344
-
+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81:243-255.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, pp. 243-255
-
-
Matsushika, A.1
Watanabe, S.2
Kodaki, T.3
Makino, K.4
Inoue, H.5
Murakami, K.6
Takimura, O.7
Sawayama, S.8
-
18
-
-
45149107626
-
A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks
-
Olofsson K., Bertilsson M., Liden G. A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 2008, 1:7.
-
(2008)
Biotechnol. Biofuels
, vol.1
, pp. 7
-
-
Olofsson, K.1
Bertilsson, M.2
Liden, G.3
-
19
-
-
42449145157
-
Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
-
Petschacher B., Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7:9.
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 9
-
-
Petschacher, B.1
Nidetzky, B.2
-
20
-
-
0004009662
-
-
Prentice Hall, Inc., NJ, USA
-
Shuler M.L., Kargi F. Bioprocess Engnieering Basic Concepts 2002, Prentice Hall, Inc., NJ, USA. 2nd ed.
-
(2002)
Bioprocess Engnieering Basic Concepts
-
-
Shuler, M.L.1
Kargi, F.2
-
21
-
-
2442641770
-
Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
-
Sonderegger M., Jeppsson M., Hahn-Hagerdal B., Sauer U. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl. Environ. Microbiol. 2004, 70:2307-2317.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 2307-2317
-
-
Sonderegger, M.1
Jeppsson, M.2
Hahn-Hagerdal, B.3
Sauer, U.4
-
22
-
-
0034878314
-
Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
-
Toivari M.H., Aristidou A., Ruohonen L., Penttilä M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 2001, 3:236-249.
-
(2001)
Metab. Eng.
, vol.3
, pp. 236-249
-
-
Toivari, M.H.1
Aristidou, A.2
Ruohonen, L.3
Penttilä, M.4
-
23
-
-
84900010663
-
Impact of biomass on industry: using ethylene derived from bioethanol within the polyester value chain
-
Van Uytvanck P.P., Hallmark B., Haire G., Marshall P.J., Dennis J.S. Impact of biomass on industry: using ethylene derived from bioethanol within the polyester value chain. ACS Sustain. Chem. Eng. 2014, 2:1098-1105.
-
(2014)
ACS Sustain. Chem. Eng.
, vol.2
, pp. 1098-1105
-
-
Van Uytvanck, P.P.1
Hallmark, B.2
Haire, G.3
Marshall, P.J.4
Dennis, J.S.5
-
24
-
-
67649757165
-
Yeast metabolic engineering for hemicellulosic ethanol production
-
Van Vleet J.H., Jeffries T.W. Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol. 2009, 20:300-306.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 300-306
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
-
25
-
-
57049166496
-
Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
-
Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab. Eng. 2008, 10:360-369.
-
(2008)
Metab. Eng.
, vol.10
, pp. 360-369
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
Olsson, L.3
-
26
-
-
0142136153
-
Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
-
Verho R., Londesborough J., Penttila M., Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69:5892-5897.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 5892-5897
-
-
Verho, R.1
Londesborough, J.2
Penttila, M.3
Richard, P.4
-
27
-
-
0030772483
-
Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation
-
Walfridsson M., Anderlund M., Bao X., Hahn-Hagerdal B. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl. Microbiol. Biotechnol. 1997, 48:218-224.
-
(1997)
Appl. Microbiol. Biotechnol.
, vol.48
, pp. 218-224
-
-
Walfridsson, M.1
Anderlund, M.2
Bao, X.3
Hahn-Hagerdal, B.4
-
29
-
-
84885439374
-
Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
-
Wei N., Quarterman J., Kim S.R., Cate J.H.D., Jin Y.-S. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4:2580.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2580
-
-
Wei, N.1
Quarterman, J.2
Kim, S.R.3
Cate, J.H.D.4
Jin, Y.-S.5
-
30
-
-
80052377729
-
Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations
-
Xiong M., Chen G., Barford J. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour. Technol. 2011, 102:9206-9215.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 9206-9215
-
-
Xiong, M.1
Chen, G.2
Barford, J.3
|