메뉴 건너뛰기




Volumn 191, Issue , 2015, Pages 445-451

Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol

Author keywords

Bioethanol; Evolutionary engineering; Galactose; Red algae; Saccharomyces cerevisiae

Indexed keywords

ALGAE; BIOETHANOL; ETHANOL; GALLIUM ALLOYS; GENES; METABOLISM; PHYSIOLOGY; TRANSCRIPTION;

EID: 84945461777     PISSN: 09608524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biortech.2015.03.057     Document Type: Article
Times cited : (27)

References (27)
  • 1
    • 84897917184 scopus 로고    scopus 로고
    • Deletion of the HXK2 gene in Saccharomyces cerevisiae enables mixed sugar fermentation of glucose and galactose in oxygen-limited conditions
    • Y.H. Bae, D.H. Kweon, Y.C. Park, and J.H. Seo Deletion of the HXK2 gene in Saccharomyces cerevisiae enables mixed sugar fermentation of glucose and galactose in oxygen-limited conditions Process Biochem. 49 2014 547 553
    • (2014) Process Biochem. , vol.49 , pp. 547-553
    • Bae, Y.H.1    Kweon, D.H.2    Park, Y.C.3    Seo, J.H.4
  • 2
    • 33751259353 scopus 로고    scopus 로고
    • Galactose transport in Kluyveromyces lactis: Major role of the glucose permease Hgt1
    • E. Baruffini, P. Goffrini, C. Donnini, and T. Lodi Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1 FEMS Yeast Res. 6 2006 1235 1242
    • (2006) FEMS Yeast Res. , vol.6 , pp. 1235-1242
    • Baruffini, E.1    Goffrini, P.2    Donnini, C.3    Lodi, T.4
  • 3
    • 32044452893 scopus 로고    scopus 로고
    • Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering
    • C. Bro, S. Knudsen, B. Regenberg, L. Olsson, and J. Nielsen Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering Appl. Environ. Microbiol. 71 2005 6465 6472
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 6465-6472
    • Bro, C.1    Knudsen, S.2    Regenberg, B.3    Olsson, L.4    Nielsen, J.5
  • 4
    • 84895163813 scopus 로고    scopus 로고
    • Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts
    • H. Cho, C.H. Ra, and S.K. Kim Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts J. Microbiol. Biotechnol. 24 2014 264 269
    • (2014) J. Microbiol. Biotechnol. , vol.24 , pp. 264-269
    • Cho, H.1    Ra, C.H.2    Kim, S.K.3
  • 6
    • 84872370882 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4
    • S.H. Han, J.E. Lee, K. Park, and Y.C. Park Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4 New Biotechnol. 30 2013 166 172
    • (2013) New Biotechnol. , vol.30 , pp. 166-172
    • Han, S.H.1    Lee, J.E.2    Park, K.3    Park, Y.C.4
  • 7
    • 0028230982 scopus 로고
    • Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae
    • M. Johnston, J.S. Flick, and T. Pexton Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae Mol. Cell. Biol. 14 1994 3834 3841
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 3834-3841
    • Johnston, M.1    Flick, J.S.2    Pexton, T.3
  • 8
    • 84876322339 scopus 로고    scopus 로고
    • High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass
    • H.T. Kim, E.J. Yun, D. Wang, J.H. Chung, I.-G. Choi, and K.H. Kim High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass Bioresour. Technol. 136 2013 582 587
    • (2013) Bioresour. Technol. , vol.136 , pp. 582-587
    • Kim, H.T.1    Yun, E.J.2    Wang, D.3    Chung, J.H.4    Choi, I.-G.5    Kim, K.H.6
  • 9
    • 84906945990 scopus 로고    scopus 로고
    • Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17
    • J. Kim, J. Ryu, I. Huh, S.-K. Hong, H. Kang, and Y. Chang Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17 Bioprocess. Biosyst. Eng. 37 2014 1871 1878
    • (2014) Bioprocess. Biosyst. Eng. , vol.37 , pp. 1871-1878
    • Kim, J.1    Ryu, J.2    Huh, I.3    Hong, S.-K.4    Kang, H.5    Chang, Y.6
  • 10
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • S.R. Kim, Y.-C. Park, Y.-S. Jin, and J.-H. Seo Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism Biotechnol. Adv. 31 2013 851 861
    • (2013) Biotechnol. Adv. , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.-C.2    Jin, Y.-S.3    Seo, J.-H.4
  • 11
    • 84903696632 scopus 로고    scopus 로고
    • Opportunities for small-scale biorefinery for production of sugar and ethanol in the Netherlands
    • R.C. Kolfschoten, M.E. Bruins, and J.P.M. Sanders Opportunities for small-scale biorefinery for production of sugar and ethanol in the Netherlands Biofuels Bioprod. Biorefining 8 2014 475 486
    • (2014) Biofuels Bioprod. Biorefining , vol.8 , pp. 475-486
    • Kolfschoten, R.C.1    Bruins, M.E.2    Sanders, J.P.M.3
  • 12
    • 84868103108 scopus 로고    scopus 로고
    • Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production
    • R. Kumari, and K. Pramanik Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production J. Biosci. Bioeng. 114 2012 622 629
    • (2012) J. Biosci. Bioeng. , vol.114 , pp. 622-629
    • Kumari, R.1    Pramanik, K.2
  • 15
    • 84859480640 scopus 로고    scopus 로고
    • Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae
    • S.H. Lee, T. Kodaki, Y.C. Park, and J.H. Seo Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae J. Biotechnol. 158 2012 184 191
    • (2012) J. Biotechnol. , vol.158 , pp. 184-191
    • Lee, S.H.1    Kodaki, T.2    Park, Y.C.3    Seo, J.H.4
  • 18
    • 0033664269 scopus 로고    scopus 로고
    • Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
    • S. Ostergaard, L. Olsson, M. Johnston, and J. Nielsen Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network Nat. Biotechnol. 18 2000 1283 1286
    • (2000) Nat. Biotechnol. , vol.18 , pp. 1283-1286
    • Ostergaard, S.1    Olsson, L.2    Johnston, M.3    Nielsen, J.4
  • 19
    • 84892806363 scopus 로고    scopus 로고
    • Simultaneous utilization of galactose and glucose by Saccharomyces cerevisiae mutant strain for ethanol production
    • J.H. Park, S.H. Kim, H.D. Park, J.S. Kim, and J.J. Yoon Simultaneous utilization of galactose and glucose by Saccharomyces cerevisiae mutant strain for ethanol production Renewable Energy 65 2014 213 218
    • (2014) Renewable Energy , vol.65 , pp. 213-218
    • Park, J.H.1    Kim, S.H.2    Park, H.D.3    Kim, J.S.4    Yoon, J.J.5
  • 21
    • 79960958091 scopus 로고    scopus 로고
    • Adaptive laboratory evolution - Harnessing the power of biology for metabolic engineering
    • V.A. Portnoy, D. Bezdan, and K. Zengler Adaptive laboratory evolution - harnessing the power of biology for metabolic engineering Curr. Opin. Biotechnol. 22 2011 590 594
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 590-594
    • Portnoy, V.A.1    Bezdan, D.2    Zengler, K.3
  • 22
    • 0033010402 scopus 로고    scopus 로고
    • Derepression of galactose metabolism in melibiase producing bakers' and distillers' yeast
    • B. Ronnow, L. Olsson, J. Nielsen, and J. Dalgaard Mikkelsen Derepression of galactose metabolism in melibiase producing bakers' and distillers' yeast J. Biotechnol. 72 1999 213 228
    • (1999) J. Biotechnol. , vol.72 , pp. 213-228
    • Ronnow, B.1    Olsson, L.2    Nielsen, J.3    Dalgaard Mikkelsen, J.4
  • 23
    • 0034882829 scopus 로고    scopus 로고
    • Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene
    • L.M. Raamsdonk, J.A. Diderich, A. Kuiper, M. van Gaalen, A.L. Kruckberg, J.A. Berden, and K. Van Dam Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene Yeast 18 2001 1023 1033
    • (2001) Yeast , vol.18 , pp. 1023-1033
    • Raamsdonk, L.M.1    Diderich, J.A.2    Kuiper, A.3    Van Gaalen, M.4    Kruckberg, A.L.5    Berden, J.A.6    Van Dam, K.7
  • 24
    • 77955651657 scopus 로고    scopus 로고
    • Challenges in scaling up biofuels infrastructure
    • T.L. Richard Challenges in scaling up biofuels infrastructure Science 329 2010 793 796
    • (2010) Science , vol.329 , pp. 793-796
    • Richard, T.L.1
  • 25
    • 43049136820 scopus 로고    scopus 로고
    • Combinatorial engineering of microbes for optimizing cellular phenotype
    • C.N.S. Santos, and G. Stephanopoulos Combinatorial engineering of microbes for optimizing cellular phenotype Curr. Opin. Chem. Biol. 12 2008 168 176
    • (2008) Curr. Opin. Chem. Biol. , vol.12 , pp. 168-176
    • Santos, C.N.S.1    Stephanopoulos, G.2
  • 26
    • 2042433460 scopus 로고
    • Saccharomyces cerevisiae of palm wine-enhanced ethanol production by using mutagens
    • V. Uma, and H. Polasa Saccharomyces cerevisiae of palm wine-enhanced ethanol production by using mutagens J. Microbiol. Biotechnol. 5 1990 1 4
    • (1990) J. Microbiol. Biotechnol. , vol.5 , pp. 1-4
    • Uma, V.1    Polasa, H.2
  • 27
    • 84872766395 scopus 로고    scopus 로고
    • Marine macroalgae: An untapped resource for producing fuels and chemicals
    • N. Wei, J. Quarterman, and Y.S. Jin Marine macroalgae: an untapped resource for producing fuels and chemicals Trends Biotechnol. 31 2013 70 77
    • (2013) Trends Biotechnol. , vol.31 , pp. 70-77
    • Wei, N.1    Quarterman, J.2    Jin, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.