-
1
-
-
0031658814
-
Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value
-
DOI 10.1016/S0922-338X(98)80131-1
-
Adachi E, Torigoe M, Sugiyama M, Nikawa J-I, Shimizu K (1998) Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86(3):284-289 (Pubitemid 28471321)
-
(1998)
Journal of Fermentation and Bioengineering
, vol.86
, Issue.3
, pp. 284-289
-
-
Adachi, E.1
Torigoe, M.2
Sugiyama, M.3
Nikawa, J.-I.4
Shimizu, K.5
-
2
-
-
70349427105
-
Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
-
Atsumi S, Li Z, Liao JC (2009) Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75(19):6306-6311
-
(2009)
Appl Environ Microbiol
, vol.75
, Issue.19
, pp. 6306-6311
-
-
Atsumi, S.1
Li, Z.2
Liao, J.C.3
-
3
-
-
84888769998
-
Molecular cloning and expression of fungal cellobiose transporters and beta-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae
-
doi:10.1016/j.jbiotec.2013.10.030
-
Bae YH, Kang KH, Jin YS, Seo JH (2014) Molecular cloning and expression of fungal cellobiose transporters and beta-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J Biotechnol 169:34-41. doi:10.1016/j.jbiotec.2013.10.030
-
(2014)
J Biotechnol
, vol.169
, pp. 34-41
-
-
Bae, Y.H.1
Kang, K.H.2
Jin, Y.S.3
Seo, J.H.4
-
4
-
-
84874990225
-
Engineering specialized metabolic pathways - is there a room for enzyme improvements?
-
Bar-Even A, Tawfik DS (2013) Engineering specialized metabolic pathways - is there a room for enzyme improvements? Curr Opin Biotechnol 24:310-319
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 310-319
-
-
Bar-Even, A.1
Tawfik, D.S.2
-
5
-
-
84872351656
-
A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases
-
doi:10.1007/s00253-012-3875-9
-
Bohlin C, Praestgaard E, Baumann M, Borch K, Praestgaard J, Monrad R, Westh P (2013) A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol 97(1):159 -169. doi:10.1007/s00253-012-3875-9
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, Issue.1
, pp. 159-169
-
-
Bohlin, C.1
Praestgaard, E.2
Baumann, M.3
Borch, K.4
Praestgaard, J.5
Monrad, R.6
Westh, P.7
-
6
-
-
48149113309
-
The renewable chemicals industry
-
Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The renewable chemicals industry. ChemSusChem 1(4):283-289
-
(2008)
ChemSusChem
, vol.1
, Issue.4
, pp. 283-289
-
-
Christensen, C.H.1
Rass-Hansen, J.2
Marsden, C.C.3
Taarning, E.4
Egeblad, K.5
-
7
-
-
0029984511
-
Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
-
Flikweert M, Van Der Zanden L, Janssen W, Steensma H, Van Dijken J, Pronk J (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12(3):247
-
(1996)
Yeast
, vol.12
, Issue.3
, pp. 247
-
-
Flikweert, M.1
Van Der Zanden, L.2
Janssen, W.3
Steensma, H.4
Van Dijken, J.5
Pronk, J.6
-
8
-
-
0032900245
-
Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae
-
DOI 10.1016/S0378-1097(99)00124-X, PII S037810979900124X
-
Flikweert MT, Swaaf M, Dijken JP, Pronk JT (1999) Growth requirements of pyruvate decarboxylase negative Saccharomyces cerevisiae. FEMS Microbiol Lett 174(1):73-79 (Pubitemid 29179435)
-
(1999)
FEMS Microbiology Letters
, vol.174
, Issue.1
, pp. 73-79
-
-
Flikweert, M.T.1
De Swaaf, M.2
Van Dijken, J.P.3
Pronk, J.T.4
-
9
-
-
77957347059
-
Cellodextrin transport in yeast for improved biofuel production
-
Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330(6000):84-86
-
(2010)
Science
, vol.330
, Issue.6000
, pp. 84-86
-
-
Galazka, J.M.1
Tian, C.2
Beeson, W.T.3
Martinez, B.4
Glass, N.L.5
Cate, J.H.6
-
10
-
-
0029039464
-
Fermentative production of 2,3-butanediol: A review
-
Garg S, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51(2):103-109
-
(1995)
Bioresour Technol
, vol.51
, Issue.2
, pp. 103-109
-
-
Garg, S.1
Jain, A.2
-
11
-
-
84875642557
-
Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
-
González-Ramos D, van den Broek M, van Maris AJ, Pronk JT, Daran JMG (2013) Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels 6(1):48
-
(2013)
Biotechnol Biofuels
, vol.6
, Issue.1
, pp. 48
-
-
González-Ramos, D.1
Van Den Broek, M.2
Van Maris, A.J.3
Pronk, J.T.4
Daran, J.M.G.5
-
12
-
-
79551670374
-
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
-
Ha S-J, Galazka JM, Kim SR, Choi J-H, Yang X, Seo J-H, Glass NL, Cate JH, Jin Y-S (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A 108(2):504-509
-
(2011)
Proc Natl Acad Sci U S a
, vol.108
, Issue.2
, pp. 504-509
-
-
Ha, S.-J.1
Galazka, J.M.2
Kim, S.R.3
Choi, J.-H.4
Yang, X.5
Seo, J.-H.6
Glass, N.L.7
Cate, J.H.8
Jin, Y.-S.9
-
13
-
-
84903819475
-
Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters
-
Ha S-J, Galazka JM, Oh EJ, Kordic V, Kim H, Jin Y-S, Cate JH (2012) Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab Eng
-
(2012)
Metab Eng
-
-
Ha, S.-J.1
Galazka, J.M.2
Oh, E.J.3
Kordic, V.4
Kim, H.5
Jin, Y.-S.6
Cate, J.H.7
-
14
-
-
0025304880
-
Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5
-
Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188(3):615-621
-
(1990)
Eur J Biochem
, vol.188
, Issue.3
, pp. 615-621
-
-
Hohmann, S.1
Cederberg, H.2
-
15
-
-
0026548118
-
A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
-
Hosaka K, J-i N, Kodaki T, Yamashita S (1992)A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111(3):352-358
-
(1992)
J Biochem
, vol.111
, Issue.3
, pp. 352-358
-
-
Hosaka, K.1
J-i, N.2
Kodaki, T.3
Yamashita, S.4
-
16
-
-
0021412533
-
Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724
-
Jansen NB, Flickinger MC, Tsao GT (1984) Production of 2, 3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26(4):362-369 (Pubitemid 14114643)
-
(1984)
Biotechnology and Bioengineering
, vol.26
, Issue.4
, pp. 362-369
-
-
Jansen, N.B.1
Flickinger, M.C.2
Tsao, G.T.3
-
17
-
-
84882274841
-
Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
-
doi:10.1016/j.biortech.2013.07.081
-
Kim S-J, Seo S-O, Jin Y-S, Seo J-H (2013) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274-281. doi:10.1016/j.biortech.2013.07.081
-
(2013)
Bioresour Technol
, vol.146
, pp. 274-281
-
-
Kim, S.-J.1
Seo, S.-O.2
Jin, Y.-S.3
Seo, J.-H.4
-
18
-
-
84859499726
-
Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
-
Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A (2012) Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 159(1):32-37
-
(2012)
J Biotechnol
, vol.159
, Issue.1
, pp. 32-37
-
-
Kondo, T.1
Tezuka, H.2
Ishii, J.3
Matsuda, F.4
Ogino, C.5
Kondo, A.6
-
19
-
-
84881500880
-
Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase
-
doi:10.1016/j.jbiotec.2013.06.016
-
Lee W-H, Nan H, Kim HJ, Jin Y-S (2013) Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J Biotechnol 167(3):316-322. doi:10.1016/j.jbiotec.2013.06.016
-
(2013)
J Biotechnol
, vol.167
, Issue.3
, pp. 316-322
-
-
Lee, W.-H.1
Nan, H.2
Kim, H.J.3
Jin, Y.-S.4
-
20
-
-
0016702372
-
Acetoin degradation in Bacillus subtilis by direct oxidative cleavage
-
López J, Thoms B, Rehbein H (1975) Acetoin degradation in Bacillus subtilis by direct oxidative cleavage. Eur J Biochem 57(2):425
-
(1975)
Eur J Biochem
, vol.57
, Issue.2
, pp. 425
-
-
López, J.1
Thoms, B.2
Rehbein, H.3
-
21
-
-
58549114482
-
Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM
-
Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82(1):49-57
-
(2009)
Appl Microbiol Biotechnol
, vol.82
, Issue.1
, pp. 49-57
-
-
Ma, C.1
Wang, A.2
Qin, J.3
Li, L.4
Ai, X.5
Jiang, T.6
Tang, H.7
Xu, P.8
-
22
-
-
84861442550
-
Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
-
Ng CY, M-y J, Lee J, Oh M-K (2012) Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 11:68
-
(2012)
Microb Cell Fact
, vol.11
, pp. 68
-
-
Ng, C.Y.1
M-y, J.2
Lee, J.3
Oh, M.-K.4
-
23
-
-
84872390751
-
Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae
-
Oh EJ, Ha S-J, Kim SR, Lee W-H, Galazka JM, Cate JH, Jin Y-S (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng 15:226-234
-
(2013)
Metab Eng
, vol.15
, pp. 226-234
-
-
Oh, E.J.1
Ha, S.-J.2
Kim, S.R.3
Lee, W.-H.4
Galazka, J.M.5
Cate, J.H.6
Jin, Y.-S.7
-
24
-
-
0030448870
-
Pyruvate metabolism in Saccharomyces cerevisiae
-
DOI 10.1002/(SICI)1097-0061(199612)12:16<1607::AID
-
Pronk JT, Steensma HY, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):1607-1633 (Pubitemid 27055830)
-
(1996)
Yeast
, vol.12
, Issue.16
, pp. 1607-1633
-
-
Pronk, J.T.1
Steensma, H.Y.2
Van Dijken, J.P.3
-
25
-
-
84899836695
-
Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms
-
doi:10.1007/s10529-013-1355-7
-
Rutter C, Chen R (2014) Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms. Biotechnol Lett 36(2):301-307. doi:10.1007/s10529-013-1355-7
-
(2014)
Biotechnol Lett
, vol.36
, Issue.2
, pp. 301-307
-
-
Rutter, C.1
Chen, R.2
-
26
-
-
77956354825
-
Catalytic conversion of renewable biomass resources to fuels and chemicals
-
Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79-100
-
(2010)
Annu Rev Chem Biomol Eng
, vol.1
, pp. 79-100
-
-
Serrano-Ruiz, J.C.1
West, R.M.2
Dumesic, J.A.3
-
27
-
-
84862262515
-
High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts
-
Shin H-D, Yoon S-H, Wu J, Rutter C, Kim S-W, Chen RR (2012) High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Bioresour Technol 118:367-373
-
(2012)
Bioresour Technol
, vol.118
, pp. 367-373
-
-
Shin, H.-D.1
Yoon, S.-H.2
Wu, J.3
Rutter, C.4
Kim, S.-W.5
Chen, R.R.6
-
28
-
-
0035098550
-
Biological production of 2,3-butanediol
-
Syu M-J (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55(1):10-18
-
(2001)
Appl Microbiol Biotechnol
, vol.55
, Issue.1
, pp. 10-18
-
-
Syu, M.-J.1
-
29
-
-
0037394829
-
Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae
-
DOI 10.1128/AEM.69.4.2094-2099.2003
-
van Maris AJ, Luttik MA, Winkler AA, van Dijken JP, Pronk JT (2003) Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2094-2099 (Pubitemid 36443625)
-
(2003)
Applied and Environmental Microbiology
, vol.69
, Issue.4
, pp. 2094-2099
-
-
Van Maris, A.J.A.1
Luttik, M.A.H.2
Winkler, A.A.3
Van Dijken, J.P.4
Pronk, J.T.5
-
30
-
-
0345869655
-
2-Independent, Glucose-Tolerant, and Pyruvate-Hyperproducing Yeast
-
DOI 10.1128/AEM.70.1.159-166.2004
-
van Maris AJ, Geertman J-MA, Vermeulen A, Groothuizen MK, Winkler AA, Piper MD, van Dijken JP, Pronk JT (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70(1):159-166 (Pubitemid 38090200)
-
(2004)
Applied and Environmental Microbiology
, vol.70
, Issue.1
, pp. 159-166
-
-
Van Maris, A.J.A.1
Geertman, J.-M.A.2
Vermeulen, A.3
Groothuizen, M.K.4
Winkler, A.A.5
Piper, M.D.W.6
Van Dijken, J.P.7
Pronk, J.T.8
-
31
-
-
43049090802
-
Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export
-
DOI 10.1128/AEM.02591-07
-
Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman J-MA, van Dijken JP, Pronk JT, van Maris AJ (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74(9):2766-2777 (Pubitemid 351632607)
-
(2008)
Applied and Environmental Microbiology
, vol.74
, Issue.9
, pp. 2766-2777
-
-
Zelle, R.M.1
De Hulster, E.2
Van Winden, W.A.3
De Waard, P.4
Dijkema, C.5
Winkler, A.A.6
Geertman, J.-M.A.7
Van Dijken, J.P.8
Pronk, J.T.9
Van Maris, A.J.A.10
|