메뉴 건너뛰기




Volumn 98, Issue 12, 2014, Pages 5757-5764

2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae

Author keywords

2,3 Butanediol; Cellobiose; Pyruvate decarboxylase deletion; S. cerevisiae

Indexed keywords

CARBOXYLATION; CHEMICALS; ETHANOL; GREENHOUSE GASES; OXYGEN; PRODUCTIVITY; SUGARS;

EID: 84903818697     PISSN: 01757598     EISSN: 14320614     Source Type: Journal    
DOI: 10.1007/s00253-014-5683-x     Document Type: Article
Times cited : (37)

References (31)
  • 1
    • 0031658814 scopus 로고    scopus 로고
    • Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value
    • DOI 10.1016/S0922-338X(98)80131-1
    • Adachi E, Torigoe M, Sugiyama M, Nikawa J-I, Shimizu K (1998) Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86(3):284-289 (Pubitemid 28471321)
    • (1998) Journal of Fermentation and Bioengineering , vol.86 , Issue.3 , pp. 284-289
    • Adachi, E.1    Torigoe, M.2    Sugiyama, M.3    Nikawa, J.-I.4    Shimizu, K.5
  • 2
    • 70349427105 scopus 로고    scopus 로고
    • Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
    • Atsumi S, Li Z, Liao JC (2009) Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75(19):6306-6311
    • (2009) Appl Environ Microbiol , vol.75 , Issue.19 , pp. 6306-6311
    • Atsumi, S.1    Li, Z.2    Liao, J.C.3
  • 3
    • 84888769998 scopus 로고    scopus 로고
    • Molecular cloning and expression of fungal cellobiose transporters and beta-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae
    • doi:10.1016/j.jbiotec.2013.10.030
    • Bae YH, Kang KH, Jin YS, Seo JH (2014) Molecular cloning and expression of fungal cellobiose transporters and beta-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J Biotechnol 169:34-41. doi:10.1016/j.jbiotec.2013.10.030
    • (2014) J Biotechnol , vol.169 , pp. 34-41
    • Bae, Y.H.1    Kang, K.H.2    Jin, Y.S.3    Seo, J.H.4
  • 4
    • 84874990225 scopus 로고    scopus 로고
    • Engineering specialized metabolic pathways - is there a room for enzyme improvements?
    • Bar-Even A, Tawfik DS (2013) Engineering specialized metabolic pathways - is there a room for enzyme improvements? Curr Opin Biotechnol 24:310-319
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 310-319
    • Bar-Even, A.1    Tawfik, D.S.2
  • 5
    • 84872351656 scopus 로고    scopus 로고
    • A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases
    • doi:10.1007/s00253-012-3875-9
    • Bohlin C, Praestgaard E, Baumann M, Borch K, Praestgaard J, Monrad R, Westh P (2013) A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol 97(1):159 -169. doi:10.1007/s00253-012-3875-9
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.1 , pp. 159-169
    • Bohlin, C.1    Praestgaard, E.2    Baumann, M.3    Borch, K.4    Praestgaard, J.5    Monrad, R.6    Westh, P.7
  • 7
    • 0029984511 scopus 로고    scopus 로고
    • Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
    • Flikweert M, Van Der Zanden L, Janssen W, Steensma H, Van Dijken J, Pronk J (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12(3):247
    • (1996) Yeast , vol.12 , Issue.3 , pp. 247
    • Flikweert, M.1    Van Der Zanden, L.2    Janssen, W.3    Steensma, H.4    Van Dijken, J.5    Pronk, J.6
  • 8
    • 0032900245 scopus 로고    scopus 로고
    • Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae
    • DOI 10.1016/S0378-1097(99)00124-X, PII S037810979900124X
    • Flikweert MT, Swaaf M, Dijken JP, Pronk JT (1999) Growth requirements of pyruvate decarboxylase negative Saccharomyces cerevisiae. FEMS Microbiol Lett 174(1):73-79 (Pubitemid 29179435)
    • (1999) FEMS Microbiology Letters , vol.174 , Issue.1 , pp. 73-79
    • Flikweert, M.T.1    De Swaaf, M.2    Van Dijken, J.P.3    Pronk, J.T.4
  • 10
    • 0029039464 scopus 로고
    • Fermentative production of 2,3-butanediol: A review
    • Garg S, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51(2):103-109
    • (1995) Bioresour Technol , vol.51 , Issue.2 , pp. 103-109
    • Garg, S.1    Jain, A.2
  • 11
    • 84875642557 scopus 로고    scopus 로고
    • Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
    • González-Ramos D, van den Broek M, van Maris AJ, Pronk JT, Daran JMG (2013) Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels 6(1):48
    • (2013) Biotechnol Biofuels , vol.6 , Issue.1 , pp. 48
    • González-Ramos, D.1    Van Den Broek, M.2    Van Maris, A.J.3    Pronk, J.T.4    Daran, J.M.G.5
  • 13
    • 84903819475 scopus 로고    scopus 로고
    • Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters
    • Ha S-J, Galazka JM, Oh EJ, Kordic V, Kim H, Jin Y-S, Cate JH (2012) Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab Eng
    • (2012) Metab Eng
    • Ha, S.-J.1    Galazka, J.M.2    Oh, E.J.3    Kordic, V.4    Kim, H.5    Jin, Y.-S.6    Cate, J.H.7
  • 14
    • 0025304880 scopus 로고
    • Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5
    • Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188(3):615-621
    • (1990) Eur J Biochem , vol.188 , Issue.3 , pp. 615-621
    • Hohmann, S.1    Cederberg, H.2
  • 15
    • 0026548118 scopus 로고
    • A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
    • Hosaka K, J-i N, Kodaki T, Yamashita S (1992)A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111(3):352-358
    • (1992) J Biochem , vol.111 , Issue.3 , pp. 352-358
    • Hosaka, K.1    J-i, N.2    Kodaki, T.3    Yamashita, S.4
  • 16
    • 0021412533 scopus 로고
    • Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724
    • Jansen NB, Flickinger MC, Tsao GT (1984) Production of 2, 3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26(4):362-369 (Pubitemid 14114643)
    • (1984) Biotechnology and Bioengineering , vol.26 , Issue.4 , pp. 362-369
    • Jansen, N.B.1    Flickinger, M.C.2    Tsao, G.T.3
  • 17
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • doi:10.1016/j.biortech.2013.07.081
    • Kim S-J, Seo S-O, Jin Y-S, Seo J-H (2013) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274-281. doi:10.1016/j.biortech.2013.07.081
    • (2013) Bioresour Technol , vol.146 , pp. 274-281
    • Kim, S.-J.1    Seo, S.-O.2    Jin, Y.-S.3    Seo, J.-H.4
  • 18
    • 84859499726 scopus 로고    scopus 로고
    • Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
    • Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A (2012) Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 159(1):32-37
    • (2012) J Biotechnol , vol.159 , Issue.1 , pp. 32-37
    • Kondo, T.1    Tezuka, H.2    Ishii, J.3    Matsuda, F.4    Ogino, C.5    Kondo, A.6
  • 19
    • 84881500880 scopus 로고    scopus 로고
    • Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase
    • doi:10.1016/j.jbiotec.2013.06.016
    • Lee W-H, Nan H, Kim HJ, Jin Y-S (2013) Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J Biotechnol 167(3):316-322. doi:10.1016/j.jbiotec.2013.06.016
    • (2013) J Biotechnol , vol.167 , Issue.3 , pp. 316-322
    • Lee, W.-H.1    Nan, H.2    Kim, H.J.3    Jin, Y.-S.4
  • 20
    • 0016702372 scopus 로고
    • Acetoin degradation in Bacillus subtilis by direct oxidative cleavage
    • López J, Thoms B, Rehbein H (1975) Acetoin degradation in Bacillus subtilis by direct oxidative cleavage. Eur J Biochem 57(2):425
    • (1975) Eur J Biochem , vol.57 , Issue.2 , pp. 425
    • López, J.1    Thoms, B.2    Rehbein, H.3
  • 22
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • Ng CY, M-y J, Lee J, Oh M-K (2012) Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 11:68
    • (2012) Microb Cell Fact , vol.11 , pp. 68
    • Ng, C.Y.1    M-y, J.2    Lee, J.3    Oh, M.-K.4
  • 23
    • 84872390751 scopus 로고    scopus 로고
    • Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae
    • Oh EJ, Ha S-J, Kim SR, Lee W-H, Galazka JM, Cate JH, Jin Y-S (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng 15:226-234
    • (2013) Metab Eng , vol.15 , pp. 226-234
    • Oh, E.J.1    Ha, S.-J.2    Kim, S.R.3    Lee, W.-H.4    Galazka, J.M.5    Cate, J.H.6    Jin, Y.-S.7
  • 24
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • DOI 10.1002/(SICI)1097-0061(199612)12:16<1607::AID
    • Pronk JT, Steensma HY, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):1607-1633 (Pubitemid 27055830)
    • (1996) Yeast , vol.12 , Issue.16 , pp. 1607-1633
    • Pronk, J.T.1    Steensma, H.Y.2    Van Dijken, J.P.3
  • 25
    • 84899836695 scopus 로고    scopus 로고
    • Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms
    • doi:10.1007/s10529-013-1355-7
    • Rutter C, Chen R (2014) Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms. Biotechnol Lett 36(2):301-307. doi:10.1007/s10529-013-1355-7
    • (2014) Biotechnol Lett , vol.36 , Issue.2 , pp. 301-307
    • Rutter, C.1    Chen, R.2
  • 26
    • 77956354825 scopus 로고    scopus 로고
    • Catalytic conversion of renewable biomass resources to fuels and chemicals
    • Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79-100
    • (2010) Annu Rev Chem Biomol Eng , vol.1 , pp. 79-100
    • Serrano-Ruiz, J.C.1    West, R.M.2    Dumesic, J.A.3
  • 27
    • 84862262515 scopus 로고    scopus 로고
    • High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts
    • Shin H-D, Yoon S-H, Wu J, Rutter C, Kim S-W, Chen RR (2012) High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Bioresour Technol 118:367-373
    • (2012) Bioresour Technol , vol.118 , pp. 367-373
    • Shin, H.-D.1    Yoon, S.-H.2    Wu, J.3    Rutter, C.4    Kim, S.-W.5    Chen, R.R.6
  • 28
    • 0035098550 scopus 로고    scopus 로고
    • Biological production of 2,3-butanediol
    • Syu M-J (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55(1):10-18
    • (2001) Appl Microbiol Biotechnol , vol.55 , Issue.1 , pp. 10-18
    • Syu, M.-J.1
  • 29
    • 0037394829 scopus 로고    scopus 로고
    • Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae
    • DOI 10.1128/AEM.69.4.2094-2099.2003
    • van Maris AJ, Luttik MA, Winkler AA, van Dijken JP, Pronk JT (2003) Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2094-2099 (Pubitemid 36443625)
    • (2003) Applied and Environmental Microbiology , vol.69 , Issue.4 , pp. 2094-2099
    • Van Maris, A.J.A.1    Luttik, M.A.H.2    Winkler, A.A.3    Van Dijken, J.P.4    Pronk, J.T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.